Physical scene understanding

IF 2.5 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Ai Magazine Pub Date : 2024-02-09 DOI:10.1002/aaai.12148
Jiajun Wu
{"title":"Physical scene understanding","authors":"Jiajun Wu","doi":"10.1002/aaai.12148","DOIUrl":null,"url":null,"abstract":"<p>Current AI systems still fail to match the flexibility, robustness, and generalizability of human intelligence: how even a young child can manipulate objects to achieve goals of their own invention or in cooperation, or can learn the essentials of a complex new task within minutes. We need AI with such embodied intelligence: transforming raw sensory inputs to rapidly build a rich understanding of the world for seeing, finding, and constructing things, achieving goals, and communicating with others. This problem of physical scene understanding is challenging because it requires a holistic interpretation of scenes, objects, and humans, including their geometry, physics, functionality, semantics, and modes of interaction, building upon studies across vision, learning, graphics, robotics, and AI. My research aims to address this problem by integrating bottom-up recognition models, deep networks, and inference algorithms with top-down structured graphical models, simulation engines, and probabilistic programs.</p>","PeriodicalId":7854,"journal":{"name":"Ai Magazine","volume":"45 1","pages":"156-164"},"PeriodicalIF":2.5000,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aaai.12148","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ai Magazine","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aaai.12148","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Current AI systems still fail to match the flexibility, robustness, and generalizability of human intelligence: how even a young child can manipulate objects to achieve goals of their own invention or in cooperation, or can learn the essentials of a complex new task within minutes. We need AI with such embodied intelligence: transforming raw sensory inputs to rapidly build a rich understanding of the world for seeing, finding, and constructing things, achieving goals, and communicating with others. This problem of physical scene understanding is challenging because it requires a holistic interpretation of scenes, objects, and humans, including their geometry, physics, functionality, semantics, and modes of interaction, building upon studies across vision, learning, graphics, robotics, and AI. My research aims to address this problem by integrating bottom-up recognition models, deep networks, and inference algorithms with top-down structured graphical models, simulation engines, and probabilistic programs.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
物理场景理解
目前的人工智能系统仍无法与人类智能的灵活性、稳健性和可扩展性相媲美:即使是一个幼儿,也能操纵物体实现自己发明或合作的目标,或在几分钟内学会一项复杂新任务的基本要素。我们需要人工智能具备这种体现智能:将原始的感官输入转化为对世界的丰富理解,从而看到、找到和构建事物,实现目标,并与他人交流。物理场景理解问题具有挑战性,因为它需要对场景、物体和人类进行整体解释,包括它们的几何、物理、功能、语义和交互模式,并以视觉、学习、图形学、机器人学和人工智能方面的研究为基础。我的研究旨在通过将自下而上的识别模型、深度网络和推理算法与自上而下的结构化图形模型、仿真引擎和概率程序相结合来解决这一问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Ai Magazine
Ai Magazine 工程技术-计算机:人工智能
CiteScore
3.90
自引率
11.10%
发文量
61
审稿时长
>12 weeks
期刊介绍: AI Magazine publishes original articles that are reasonably self-contained and aimed at a broad spectrum of the AI community. Technical content should be kept to a minimum. In general, the magazine does not publish articles that have been published elsewhere in whole or in part. The magazine welcomes the contribution of articles on the theory and practice of AI as well as general survey articles, tutorial articles on timely topics, conference or symposia or workshop reports, and timely columns on topics of interest to AI scientists.
期刊最新文献
Issue Information AI fairness in practice: Paradigm, challenges, and prospects Toward the confident deployment of real-world reinforcement learning agents Towards robust visual understanding: A paradigm shift in computer vision from recognition to reasoning Efficient and robust sequential decision making algorithms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1