Elisa Ruiz, C. Varenne, B. S. de Lima, T. Gueye, A. Pauly, J. Brunet, V. Mastelaro, A. Ndiaye
{"title":"Investigating the Metallic Nanoparticles Decoration on Reduced Graphene Oxide-Based Sensors Used to Detect Sulfur Dioxide","authors":"Elisa Ruiz, C. Varenne, B. S. de Lima, T. Gueye, A. Pauly, J. Brunet, V. Mastelaro, A. Ndiaye","doi":"10.3390/chemosensors12020024","DOIUrl":null,"url":null,"abstract":"This paper presents the impact of the decoration of reduced graphene oxide (rGO) with metallic nanoparticles to detect sulfur dioxide (SO2). Copper and platinum were employed to produce metal nanoparticles (NPs) for the chemical and physical decoration of rGO to form the nanocomposites (rGO/NPs). We optimized NP loading by varying the concentrations of metal ions and deposition times for chemical and physical decoration, respectively. The chemical decoration presents a random nanoparticle distribution on the rGO surface with a broad particle size distribution (1 to 100 nm with a majority less than 40 nm). In comparison, the physical decoration presents uniformly distributed nanoparticles with particles of a size between 1 and 20 nm, with a majority less than 10 nm. The chemically decorated structures present the best gas responses and show that lower NP loading provides better responses. The nanocomposites present responses owing to a better synergy between NPs and the rGO surface, combined with the catalytic action of the NPs on the rGO. The physical decoration allows higher NP surface coverage than the chemical one but implies a lower remaining rGO naked surface for gaseous molecule interaction. These results illustrate that the NPs’ surface and the uncovered rGO contribute to the gas response.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":"22 11-12","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/chemosensors12020024","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents the impact of the decoration of reduced graphene oxide (rGO) with metallic nanoparticles to detect sulfur dioxide (SO2). Copper and platinum were employed to produce metal nanoparticles (NPs) for the chemical and physical decoration of rGO to form the nanocomposites (rGO/NPs). We optimized NP loading by varying the concentrations of metal ions and deposition times for chemical and physical decoration, respectively. The chemical decoration presents a random nanoparticle distribution on the rGO surface with a broad particle size distribution (1 to 100 nm with a majority less than 40 nm). In comparison, the physical decoration presents uniformly distributed nanoparticles with particles of a size between 1 and 20 nm, with a majority less than 10 nm. The chemically decorated structures present the best gas responses and show that lower NP loading provides better responses. The nanocomposites present responses owing to a better synergy between NPs and the rGO surface, combined with the catalytic action of the NPs on the rGO. The physical decoration allows higher NP surface coverage than the chemical one but implies a lower remaining rGO naked surface for gaseous molecule interaction. These results illustrate that the NPs’ surface and the uncovered rGO contribute to the gas response.
期刊介绍:
ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric.
Indexed/Abstracted:
Web of Science SCIE
Scopus
CAS
INSPEC
Portico