Investigating the Metallic Nanoparticles Decoration on Reduced Graphene Oxide-Based Sensors Used to Detect Sulfur Dioxide

IF 3.7 3区 工程技术 Q2 CHEMISTRY, ANALYTICAL Chemosensors Pub Date : 2024-02-08 DOI:10.3390/chemosensors12020024
Elisa Ruiz, C. Varenne, B. S. de Lima, T. Gueye, A. Pauly, J. Brunet, V. Mastelaro, A. Ndiaye
{"title":"Investigating the Metallic Nanoparticles Decoration on Reduced Graphene Oxide-Based Sensors Used to Detect Sulfur Dioxide","authors":"Elisa Ruiz, C. Varenne, B. S. de Lima, T. Gueye, A. Pauly, J. Brunet, V. Mastelaro, A. Ndiaye","doi":"10.3390/chemosensors12020024","DOIUrl":null,"url":null,"abstract":"This paper presents the impact of the decoration of reduced graphene oxide (rGO) with metallic nanoparticles to detect sulfur dioxide (SO2). Copper and platinum were employed to produce metal nanoparticles (NPs) for the chemical and physical decoration of rGO to form the nanocomposites (rGO/NPs). We optimized NP loading by varying the concentrations of metal ions and deposition times for chemical and physical decoration, respectively. The chemical decoration presents a random nanoparticle distribution on the rGO surface with a broad particle size distribution (1 to 100 nm with a majority less than 40 nm). In comparison, the physical decoration presents uniformly distributed nanoparticles with particles of a size between 1 and 20 nm, with a majority less than 10 nm. The chemically decorated structures present the best gas responses and show that lower NP loading provides better responses. The nanocomposites present responses owing to a better synergy between NPs and the rGO surface, combined with the catalytic action of the NPs on the rGO. The physical decoration allows higher NP surface coverage than the chemical one but implies a lower remaining rGO naked surface for gaseous molecule interaction. These results illustrate that the NPs’ surface and the uncovered rGO contribute to the gas response.","PeriodicalId":10057,"journal":{"name":"Chemosensors","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemosensors","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/chemosensors12020024","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents the impact of the decoration of reduced graphene oxide (rGO) with metallic nanoparticles to detect sulfur dioxide (SO2). Copper and platinum were employed to produce metal nanoparticles (NPs) for the chemical and physical decoration of rGO to form the nanocomposites (rGO/NPs). We optimized NP loading by varying the concentrations of metal ions and deposition times for chemical and physical decoration, respectively. The chemical decoration presents a random nanoparticle distribution on the rGO surface with a broad particle size distribution (1 to 100 nm with a majority less than 40 nm). In comparison, the physical decoration presents uniformly distributed nanoparticles with particles of a size between 1 and 20 nm, with a majority less than 10 nm. The chemically decorated structures present the best gas responses and show that lower NP loading provides better responses. The nanocomposites present responses owing to a better synergy between NPs and the rGO surface, combined with the catalytic action of the NPs on the rGO. The physical decoration allows higher NP surface coverage than the chemical one but implies a lower remaining rGO naked surface for gaseous molecule interaction. These results illustrate that the NPs’ surface and the uncovered rGO contribute to the gas response.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
研究用于检测二氧化硫的还原氧化石墨烯传感器上的金属纳米颗粒装饰
本文介绍了用金属纳米粒子装饰还原氧化石墨烯(rGO)对检测二氧化硫(SO2)的影响。我们采用铜和铂来生产金属纳米粒子(NPs),对还原氧化石墨烯进行化学和物理装饰,形成纳米复合材料(rGO/NPs)。我们分别通过改变化学和物理装饰的金属离子浓度和沉积时间来优化 NP 负载。化学装饰在 rGO 表面呈现出随机的纳米颗粒分布,颗粒大小分布广泛(1 到 100 nm,大部分小于 40 nm)。相比之下,物理装饰呈现出均匀分布的纳米颗粒,颗粒大小在 1 到 20 纳米之间,大部分小于 10 纳米。化学装饰结构呈现出最佳的气体响应,并显示出较低的 NP 负载可提供更好的响应。纳米复合材料之所以能产生反应,是因为 NPs 与 rGO 表面之间产生了更好的协同作用,再加上 NPs 对 rGO 的催化作用。物理装饰比化学装饰的 NP 表面覆盖率更高,但意味着气态分子相互作用的剩余 rGO 裸露表面更少。这些结果表明,NPs 表面和未覆盖的 rGO 对气体反应有促进作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemosensors
Chemosensors Chemistry-Analytical Chemistry
CiteScore
5.00
自引率
9.50%
发文量
450
审稿时长
11 weeks
期刊介绍: Chemosensors (ISSN 2227-9040; CODEN: CHEMO9) is an international, scientific, open access journal on the science and technology of chemical sensors published quarterly online by MDPI.
期刊最新文献
Controlled Insertion of Silver Nanoparticles in LbL Nanostructures: Fine-Tuning the Sensing Units of an Impedimetric E-Tongue The Developments on Lateral Flow Immunochromatographic Assay for Food Safety in Recent 10 Years: A Review All-Solid-State Potentiometric Sensor Based on Graphene Oxide as Ion-to-Electron Transducer for Nitrate Detection in Water Samples Defect Engineering in Transition Metal Dichalcogenide-Based Gas Sensors Hydrothermally Synthesized Cerium Phosphate with Functionalized Carbon Nanofiber Nanocomposite for Enhanced Electrochemical Detection of Hypoxanthine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1