Effects of joule heating and viscous dissipation on electromagneto-hydrodynamic flow in a microchannel with electroosmotic effect: Enhancement of MEMS cooling

Usman S. Rilwan, M. Oni, H. Jibril, B. Jha
{"title":"Effects of joule heating and viscous dissipation on electromagneto-hydrodynamic flow in a microchannel with electroosmotic effect: Enhancement of MEMS cooling","authors":"Usman S. Rilwan, M. Oni, H. Jibril, B. Jha","doi":"10.1177/23977914231217929","DOIUrl":null,"url":null,"abstract":"This paper inspects the effect of Joule heating and viscous dissipation due to electric double layer (EDL) and electroosmotic effect on steady fully developed electromagnetohydrodynamic flow in a microchannel. Dimensionless formulations of the Poisson-Boltzmann, momentum, and energy equations are derived for the electric potential, velocity profile, and temperature distribution in the microchannel. Exact solutions for the temperature distributions and velocity profile were obtained using the method of undetermined coefficients. The Debye-Hückel linearization is used to get exact solution for the electric potential. The results showed that Brinkmann number [Formula: see text], Joule heating parameter [Formula: see text], Debye-Hückel parameter [Formula: see text], Hartmann number [Formula: see text], and electric field [Formula: see text] have a substantial impact on flow formation and heat transfer. The complex interaction between joule heating, viscous dissipation, and the EOF effect were accurately captured. The range values for the governing parameter for [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], and [Formula: see text] are [Formula: see text], and[Formula: see text] respectively.","PeriodicalId":516661,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanomaterials, Nanoengineering and Nanosystems","volume":"10 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanomaterials, Nanoengineering and Nanosystems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/23977914231217929","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper inspects the effect of Joule heating and viscous dissipation due to electric double layer (EDL) and electroosmotic effect on steady fully developed electromagnetohydrodynamic flow in a microchannel. Dimensionless formulations of the Poisson-Boltzmann, momentum, and energy equations are derived for the electric potential, velocity profile, and temperature distribution in the microchannel. Exact solutions for the temperature distributions and velocity profile were obtained using the method of undetermined coefficients. The Debye-Hückel linearization is used to get exact solution for the electric potential. The results showed that Brinkmann number [Formula: see text], Joule heating parameter [Formula: see text], Debye-Hückel parameter [Formula: see text], Hartmann number [Formula: see text], and electric field [Formula: see text] have a substantial impact on flow formation and heat transfer. The complex interaction between joule heating, viscous dissipation, and the EOF effect were accurately captured. The range values for the governing parameter for [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], and [Formula: see text] are [Formula: see text], and[Formula: see text] respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
焦耳加热和粘性耗散对具有电渗效应的微通道中电磁流体力学流动的影响:增强 MEMS 冷却
本文探讨了焦耳热和双电层(EDL)引起的粘性耗散以及电渗效应对微通道中稳定的全展开电磁流体力学流动的影响。针对微通道中的电动势、速度曲线和温度分布,推导出了泊松-波尔兹曼、动量和能量方程的无量纲公式。利用未定系数法获得了温度分布和速度分布的精确解。利用 Debye-Hückel 线性化方法得到了电动势的精确解。结果表明,布林曼数[计算公式:见正文]、焦耳加热参数[计算公式:见正文]、Debye-Hückel 参数[计算公式:见正文]、哈特曼数[计算公式:见正文]和电场[计算公式:见正文]对流动的形成和传热有很大影响。焦耳热、粘性耗散和 EOF 效应之间复杂的相互作用被准确地捕捉到。公式:见正文]、[公式:见正文]、[公式:见正文]、[公式:见正文]和[公式:见正文]的控制参数范围值分别为[公式:见正文]、[公式:见正文]和[公式:见正文]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Entropy generation analysis of mixed-convective flow of magnetohydrodynamic reactive couple stress MWCNT-Ag/C2H6O2 hybrid nanofluid with variable properties in a porous vertical channel Improving the performance of cutting fluids by using ZnO and ZrO2 nanoparticles Simulation of magneto-nano-bioconvective coating flow with blowing and multiple slip effects Investigating the effect of external surface layer on high pressure phase evolution in a single crystal: A mechanics-based phase field study Physical characteristics of variable thermal conductivity and MHD flow across a continually stretched sheet
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1