Investigating the effect of external surface layer on high pressure phase evolution in a single crystal: A mechanics-based phase field study

Seyed Hamed Mirmahdi, M. Javanbakht
{"title":"Investigating the effect of external surface layer on high pressure phase evolution in a single crystal: A mechanics-based phase field study","authors":"Seyed Hamed Mirmahdi, M. Javanbakht","doi":"10.1177/23977914241259332","DOIUrl":null,"url":null,"abstract":"In this paper, effect of the external surface layer on low pressure phase (LPP)-high pressure phase (HPP) transformation in a single crystal is investigated using a phase field model. It consists of a kinetic equation to represent the LPP-HPP transformation and another one to introduce the external surface layer between the bulk and surrounding phase within which the surface energy is properly distributed. After resolving a stationary layer, the coupled elasticity and phase field equations are solved to capture the HHP evolution. The variation of the critical thermal driving force ([Formula: see text]) versus the ratio of the external surface layer width to the HPP-LPP interface width ([Formula: see text]) is found for different boundary conditions, uniaxial pressures and transformation strains. The external surface layer reveals a similar nonlinear increase of [Formula: see text] versus [Formula: see text], in agreement with previous numerical and experimental data on thermal induced transformation/melting at the nanoscale. Without vertical constraint, [Formula: see text] nonlinearly increases versus [Formula: see text] and remains constant for [Formula: see text]. It also linearly reduces versus the pressure/transformation strain, independent of [Formula: see text]. With vertical constraint, [Formula: see text] is larger and weakly dependent on [Formula: see text]. Under applied pressure, the transformation work linearly increases with the transformation strain for [Formula: see text] and consequently, [Formula: see text] reduces. The obtained results help to understand the effect of the external surface layer on the HPP evolution in relation to other key parameters depending on its width.","PeriodicalId":516661,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanomaterials, Nanoengineering and Nanosystems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanomaterials, Nanoengineering and Nanosystems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/23977914241259332","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, effect of the external surface layer on low pressure phase (LPP)-high pressure phase (HPP) transformation in a single crystal is investigated using a phase field model. It consists of a kinetic equation to represent the LPP-HPP transformation and another one to introduce the external surface layer between the bulk and surrounding phase within which the surface energy is properly distributed. After resolving a stationary layer, the coupled elasticity and phase field equations are solved to capture the HHP evolution. The variation of the critical thermal driving force ([Formula: see text]) versus the ratio of the external surface layer width to the HPP-LPP interface width ([Formula: see text]) is found for different boundary conditions, uniaxial pressures and transformation strains. The external surface layer reveals a similar nonlinear increase of [Formula: see text] versus [Formula: see text], in agreement with previous numerical and experimental data on thermal induced transformation/melting at the nanoscale. Without vertical constraint, [Formula: see text] nonlinearly increases versus [Formula: see text] and remains constant for [Formula: see text]. It also linearly reduces versus the pressure/transformation strain, independent of [Formula: see text]. With vertical constraint, [Formula: see text] is larger and weakly dependent on [Formula: see text]. Under applied pressure, the transformation work linearly increases with the transformation strain for [Formula: see text] and consequently, [Formula: see text] reduces. The obtained results help to understand the effect of the external surface layer on the HPP evolution in relation to other key parameters depending on its width.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
研究外表面层对单晶体高压相演化的影响:基于力学的相场研究
本文利用相场模型研究了外表面层对单晶体中低压相(LPP)-高压相(HPP)转化的影响。该模型包括一个表示低压相-高压相转变的动力学方程和另一个用于引入体相和周围相之间的外表面层的动力学方程,在该外表面层中表面能得到了适当的分布。在解决了静止层问题后,对耦合弹性方程和相场方程进行求解,以捕捉 HHP 的演化过程。在不同的边界条件、单轴压力和转化应变下,临界热驱动力([计算公式:见正文])与外表面层宽度与 HPP-LPP 界面宽度之比([计算公式:见正文])发生了变化。外部表层显示出[式:见正文]与[式:见正文]之间类似的非线性增长,这与之前有关纳米尺度热诱导转化/熔化的数值和实验数据一致。在没有垂直约束的情况下,[式:见正文]随[式:见正文]的变化呈非线性增长,而[式:见正文]则保持不变。它还随压力/变形应变线性减小,与[公式:见正文]无关。在垂直约束条件下,[公式:见正文]较大,且弱依赖于[公式:见正文]。在施加压力的情况下,[公式:见正文]的变形功随变形应变线性增加,[公式:见正文]随之减小。所获得的结果有助于理解外表面层对 HPP 演化的影响与其宽度相关的其他关键参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Entropy generation analysis of mixed-convective flow of magnetohydrodynamic reactive couple stress MWCNT-Ag/C2H6O2 hybrid nanofluid with variable properties in a porous vertical channel Improving the performance of cutting fluids by using ZnO and ZrO2 nanoparticles Simulation of magneto-nano-bioconvective coating flow with blowing and multiple slip effects Investigating the effect of external surface layer on high pressure phase evolution in a single crystal: A mechanics-based phase field study Physical characteristics of variable thermal conductivity and MHD flow across a continually stretched sheet
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1