Ramzey Abujarour, Jason Dinella, Mochtar Pribadi, Lauren K Fong, Matthew Denholtz, Alma Gutierrez, Matt Haynes, Enaaya Mahmood, Tom T Lee, Sheng Ding, Bahram Valamehr
{"title":"A chemical approach facilitates CRISPRa-only human iPSC generation and minimizes the number of targeted loci required","authors":"Ramzey Abujarour, Jason Dinella, Mochtar Pribadi, Lauren K Fong, Matthew Denholtz, Alma Gutierrez, Matt Haynes, Enaaya Mahmood, Tom T Lee, Sheng Ding, Bahram Valamehr","doi":"10.2144/fsoa-2023-0257","DOIUrl":null,"url":null,"abstract":"Aim: We explored the generation of human induced pluripotent stem cells (iPSCs) solely through the transcriptional activation of endogenous genes by CRISPR activation (CRISPRa). Methods: Minimal number of human-specific guide RNAs targeting a limited set of loci were used with a unique cocktail of small molecules (CRISPRa-SM). Results: iPSC clones were efficiently generated by CRISPRa-SM, expressed general and naive iPSC markers and clustered with high-quality iPSCs generated using conventional reprogramming methods. iPSCs showed genomic stability and robust pluripotent potential as assessed by in vitro and in vivo. Conclusion: CRISPRa-SM-generated human iPSCs by direct and multiplexed loci activation facilitating a unique and potentially safer cellular reprogramming process to aid potential applications in cellular therapy and regenerative medicine.","PeriodicalId":507258,"journal":{"name":"Future Science OA","volume":"424 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Science OA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2144/fsoa-2023-0257","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Aim: We explored the generation of human induced pluripotent stem cells (iPSCs) solely through the transcriptional activation of endogenous genes by CRISPR activation (CRISPRa). Methods: Minimal number of human-specific guide RNAs targeting a limited set of loci were used with a unique cocktail of small molecules (CRISPRa-SM). Results: iPSC clones were efficiently generated by CRISPRa-SM, expressed general and naive iPSC markers and clustered with high-quality iPSCs generated using conventional reprogramming methods. iPSCs showed genomic stability and robust pluripotent potential as assessed by in vitro and in vivo. Conclusion: CRISPRa-SM-generated human iPSCs by direct and multiplexed loci activation facilitating a unique and potentially safer cellular reprogramming process to aid potential applications in cellular therapy and regenerative medicine.