Enhanced Security in Public Key Cryptography: A Novel Approach Combining Gaussian Graceful Labeling and NTRU Public Key Cryptosystem

S. Kavitha, G. Jayalalitha, K. Sivaranjani
{"title":"Enhanced Security in Public Key Cryptography: A Novel Approach Combining Gaussian Graceful Labeling and NTRU Public Key Cryptosystem","authors":"S. Kavitha, G. Jayalalitha, K. Sivaranjani","doi":"10.4108/eetiot.4992","DOIUrl":null,"url":null,"abstract":"This research explores an encryption system that combines the Nth-degree Truncated Polynomial Ring Unit (NTRU) public key cryptosystem with Gaussian Graceful Labeling. This process assigns distinct labels to a graph's vertices, resulting in successive Gaussian integers. The NTRU method offers enhanced security and efficient key exchange. The communication encryption process depends on integers P, a, and b, with P being the largest prime number in the vertex labeling. The original receivers are the vertex labeling with the largest prime number coefficient, while all other receivers receive messages from the sender. A polynomial algebraic mixing system and a clustering principle based on the abecedarian probability proposition are used in NTRU encryption and decryption. The choice of relatively prime integers p and q in NTRU plays a role in the construction of polynomial rings used for encryption and decryption, with specific choices and properties designed to ensure scheme security.","PeriodicalId":506477,"journal":{"name":"EAI Endorsed Transactions on Internet of Things","volume":"13 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EAI Endorsed Transactions on Internet of Things","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4108/eetiot.4992","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This research explores an encryption system that combines the Nth-degree Truncated Polynomial Ring Unit (NTRU) public key cryptosystem with Gaussian Graceful Labeling. This process assigns distinct labels to a graph's vertices, resulting in successive Gaussian integers. The NTRU method offers enhanced security and efficient key exchange. The communication encryption process depends on integers P, a, and b, with P being the largest prime number in the vertex labeling. The original receivers are the vertex labeling with the largest prime number coefficient, while all other receivers receive messages from the sender. A polynomial algebraic mixing system and a clustering principle based on the abecedarian probability proposition are used in NTRU encryption and decryption. The choice of relatively prime integers p and q in NTRU plays a role in the construction of polynomial rings used for encryption and decryption, with specific choices and properties designed to ensure scheme security.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
增强公钥密码学的安全性:结合高斯优雅标记和 NTRU 公钥密码系统的新方法
这项研究探索了一种加密系统,它将 Nth 度截断多项式环单元(NTRU)公钥加密系统与高斯优雅标签(Gaussian Graceful Labeling)相结合。这一过程为图的顶点分配不同的标签,从而产生连续的高斯整数。NTRU 方法提供了更高的安全性和高效的密钥交换。通信加密过程取决于整数 P、a 和 b,其中 P 是顶点标记中最大的质数。原始接收者是具有最大质数系数的顶点标签,而其他所有接收者都从发送者那里接收信息。在 NTRU 加密和解密中使用了多项式代数混合系统和基于阿贝歇德概率命题的聚类原理。在 NTRU 中,相对素数 p 和 q 的选择对用于加密和解密的多项式环的构建起着重要作用,其特定选择和属性旨在确保方案的安全性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Robust GAN-Based CNN Model as Generative AI Application for Deepfake Detection Identification of Lithology from Well Log Data Using Machine Learning Crime Prediction using Machine Learning Crime Prediction using Machine Learning Circumventing Stragglers and Staleness in Distributed CNN using LSTM
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1