Development of genomic evaluation for methane efficiency in Canadian Holsteins*

Hinayah Rojas de Oliveira , Hannah Sweett , Saranya Narayana , Allison Fleming , Saeed Shadpour , Francesca Malchiodi , Janusz Jamrozik , Gerrit Kistemaker , Peter Sullivan , Flavio Schenkel , Dagnachew Hailemariam , Paul Stothard , Graham Plastow , Brian Van Doormaal , Michael Lohuis , Jay Shannon , Christine Baes , Filippo Miglior
{"title":"Development of genomic evaluation for methane efficiency in Canadian Holsteins*","authors":"Hinayah Rojas de Oliveira ,&nbsp;Hannah Sweett ,&nbsp;Saranya Narayana ,&nbsp;Allison Fleming ,&nbsp;Saeed Shadpour ,&nbsp;Francesca Malchiodi ,&nbsp;Janusz Jamrozik ,&nbsp;Gerrit Kistemaker ,&nbsp;Peter Sullivan ,&nbsp;Flavio Schenkel ,&nbsp;Dagnachew Hailemariam ,&nbsp;Paul Stothard ,&nbsp;Graham Plastow ,&nbsp;Brian Van Doormaal ,&nbsp;Michael Lohuis ,&nbsp;Jay Shannon ,&nbsp;Christine Baes ,&nbsp;Filippo Miglior","doi":"10.3168/jdsc.2023-0431","DOIUrl":null,"url":null,"abstract":"<div><div>Reducing methane (CH<sub>4</sub>) emissions from agriculture, among other sectors, is a key step to reducing global warming. There are many strategies to reduce CH<sub>4</sub> emissions in ruminant animals, including genetic selection, which yields cumulative and permanent genetic gains over generations. A single-step genomic evaluation for methane efficiency (MEF) was officially implemented in April 2023 for the Canadian Holstein breed, aiming to reduce CH<sub>4</sub> emissions without affecting production levels. This evaluation was achieved by using milk mid-infrared (MIR) spectral data to predict individual cow CH<sub>4</sub> production. The genetic evaluation model included milk MIR predicted CH<sub>4</sub> (CH4<sub>MIR</sub>), along with milk yield (MY), fat yield (FY), and protein yield (PY), as correlated traits. Traits were expressed in kilograms per day (MY, FY, and PY) or grams per day (CH4<sub>MIR</sub>). The MiX99 software was used to fit the single-step, 4-trait animal model. Genomic breeding values for CH4<sub>MIR</sub> were then obtained by re-parameterization, using recursive genetic linear regression coefficients on MY, FY, and PY, giving a measure of MEF that is genetically independent of the production traits. The estimated breeding values were expressed as relative breeding values with a mean of 100 and standard deviation of 5 for the genetic base population, where a higher value indicates the animal produces lower predicted CH<sub>4</sub>. This national genomic evaluation is another tool that will lower the dairy industry's carbon footprint by reducing CH<sub>4</sub> emissions without affecting production traits.</div></div>","PeriodicalId":94061,"journal":{"name":"JDS communications","volume":"5 6","pages":"Pages 756-760"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JDS communications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666910224000115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Reducing methane (CH4) emissions from agriculture, among other sectors, is a key step to reducing global warming. There are many strategies to reduce CH4 emissions in ruminant animals, including genetic selection, which yields cumulative and permanent genetic gains over generations. A single-step genomic evaluation for methane efficiency (MEF) was officially implemented in April 2023 for the Canadian Holstein breed, aiming to reduce CH4 emissions without affecting production levels. This evaluation was achieved by using milk mid-infrared (MIR) spectral data to predict individual cow CH4 production. The genetic evaluation model included milk MIR predicted CH4 (CH4MIR), along with milk yield (MY), fat yield (FY), and protein yield (PY), as correlated traits. Traits were expressed in kilograms per day (MY, FY, and PY) or grams per day (CH4MIR). The MiX99 software was used to fit the single-step, 4-trait animal model. Genomic breeding values for CH4MIR were then obtained by re-parameterization, using recursive genetic linear regression coefficients on MY, FY, and PY, giving a measure of MEF that is genetically independent of the production traits. The estimated breeding values were expressed as relative breeding values with a mean of 100 and standard deviation of 5 for the genetic base population, where a higher value indicates the animal produces lower predicted CH4. This national genomic evaluation is another tool that will lower the dairy industry's carbon footprint by reducing CH4 emissions without affecting production traits.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
研讨会回顾:加拿大荷斯坦牛甲烷效率基因组评估的开发
减少农业和其他行业的甲烷(CH4)排放是减少全球变暖的关键一步。减少反刍动物甲烷(CH4)排放的策略有很多,其中包括基因选择,这种选择可以产生世代累积的永久性基因增益。2023 年 4 月,加拿大荷斯坦品种正式实施了甲烷效率(MEF)单步基因组评估,旨在减少甲烷排放,同时不影响生产水平。这项评估是通过使用牛奶中红外(MIR)光谱数据来预测奶牛个体的甲烷产量来实现的。遗传评估模型包括牛奶中红外预测CH4(CH4MIR),以及作为相关性状的产奶量(MY)、脂肪产量(FY)和蛋白质产量(PY)。性状以公斤/天(MY、FY 和 PY)或克/天(CH4MIR)表示。MiX99 软件用于拟合单步四性状动物模型。然后,通过对 MY、FY 和 PY 的递归遗传线性回归系数重新参数化,得到 CH4MIR 的基因组育种值,从而得到与生产性状无关的 MEF 值。估算的育种值以相对育种值表示,遗传基础种群的平均值为 100,标准偏差为 5,数值越高,表明动物产生的预测 CH4 越低。这项国家基因组评估是在不影响生产性状的情况下减少CH4排放,从而降低奶业碳足迹的又一工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
JDS communications
JDS communications Animal Science and Zoology
CiteScore
2.00
自引率
0.00%
发文量
0
期刊最新文献
Table of Contents Editorial Board Getting to grips with resilience: Toward large-scale phenotyping of this complex trait* Development of genomic evaluation for methane efficiency in Canadian Holsteins* Validation and interdevice reliability of a behavior monitoring collar to measure rumination, feeding activity, and idle time of lactating dairy cows
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1