{"title":"Appropriate Supply of Ammonium Nitrogen and Ammonium Nitrate Reduces Cadmium Content in Rice Seedlings by Inhibiting Cadmium Uptake and Transport","authors":"","doi":"10.1016/j.rsci.2024.02.007","DOIUrl":null,"url":null,"abstract":"<div><div>Reasonable nitrogen (N) application is a promising strategy for reducing crop cadmium (Cd) toxicity. However, the specific form of N and the required amount that affect Cd tolerance and accumulation in rice remain unclear. This study explored the influence of different N-fertilizer forms (NH<sub>4</sub>NO<sub>3</sub>, NH<sub>4</sub>Cl, and KNO<sub>3</sub>) and dosages on Cd tolerance and uptake in Cd-stressed N-sensitive and N-insensitive <em>indica</em> rice accessions. The results indicated that the Cd tolerance of N-sensitive <em>indica</em> accessions is more robust than that of N-insensitive ones. Furthermore, the shoot Cd content and Cd translocation rate in both N-sensitive and N-insensitive <em>indica</em> accessions decreased with an appropriate supply of NH<sub>4</sub>NO<sub>3</sub> and NH<sub>4</sub>Cl, whereas they were comparable or slightly increased with increased KNO<sub>3</sub>. Unfortunately, we did not find significant and regular differences in Cd accumulation or translocation between N-sensitive and N-insensitive rice accessions. Consistent with the reduction of shoot Cd content, the addition of NH<sub>4</sub>NO<sub>3</sub> and NH<sub>4</sub>Cl also inhibited the instantaneous root Cd<sup>2+</sup> uptake. The expression changes of Cd transport-related genes under different N forms and dosages suggested that the decreased shoot Cd content, caused by the increased supply of NH<sub>4</sub>NO<sub>3</sub> and NH<sub>4</sub>Cl, is likely achieved by reducing the transcription of <em>OsNRAMP1</em> and <em>OsIRT1</em>. In summary, our findings reveal that an appropriate supply of NH<sub>4</sub>NO<sub>3</sub> and NH<sub>4</sub>Cl could reduce Cd uptake and transport in rice seedlings, suggesting that rational N management could reduce the Cd risk in rice production.</div></div>","PeriodicalId":56069,"journal":{"name":"Rice Science","volume":"31 5","pages":"Pages 587-602"},"PeriodicalIF":5.6000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rice Science","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1672630824000167","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Reasonable nitrogen (N) application is a promising strategy for reducing crop cadmium (Cd) toxicity. However, the specific form of N and the required amount that affect Cd tolerance and accumulation in rice remain unclear. This study explored the influence of different N-fertilizer forms (NH4NO3, NH4Cl, and KNO3) and dosages on Cd tolerance and uptake in Cd-stressed N-sensitive and N-insensitive indica rice accessions. The results indicated that the Cd tolerance of N-sensitive indica accessions is more robust than that of N-insensitive ones. Furthermore, the shoot Cd content and Cd translocation rate in both N-sensitive and N-insensitive indica accessions decreased with an appropriate supply of NH4NO3 and NH4Cl, whereas they were comparable or slightly increased with increased KNO3. Unfortunately, we did not find significant and regular differences in Cd accumulation or translocation between N-sensitive and N-insensitive rice accessions. Consistent with the reduction of shoot Cd content, the addition of NH4NO3 and NH4Cl also inhibited the instantaneous root Cd2+ uptake. The expression changes of Cd transport-related genes under different N forms and dosages suggested that the decreased shoot Cd content, caused by the increased supply of NH4NO3 and NH4Cl, is likely achieved by reducing the transcription of OsNRAMP1 and OsIRT1. In summary, our findings reveal that an appropriate supply of NH4NO3 and NH4Cl could reduce Cd uptake and transport in rice seedlings, suggesting that rational N management could reduce the Cd risk in rice production.
Rice ScienceAgricultural and Biological Sciences-Agronomy and Crop Science
CiteScore
8.90
自引率
6.20%
发文量
55
审稿时长
40 weeks
期刊介绍:
Rice Science is an international research journal sponsored by China National Rice Research Institute. It publishes original research papers, review articles, as well as short communications on all aspects of rice sciences in English language. Some of the topics that may be included in each issue are: breeding and genetics, biotechnology, germplasm resources, crop management, pest management, physiology, soil and fertilizer management, ecology, cereal chemistry and post-harvest processing.