Julia Gente , Marc Hirth , Sven Weikert , Marc Schwarzbach , Tiago Milhano , Dimitrios Gkoutzos , Daniel Ridley , Christian Schmierer , Stephan Schuster
{"title":"Design of an autonomous flight termination system for an international market with heterogeneous regulations","authors":"Julia Gente , Marc Hirth , Sven Weikert , Marc Schwarzbach , Tiago Milhano , Dimitrios Gkoutzos , Daniel Ridley , Christian Schmierer , Stephan Schuster","doi":"10.1016/j.jsse.2024.01.003","DOIUrl":null,"url":null,"abstract":"<div><p><span>Autonomous Flight Termination Systems (AFTS) are used to terminate potentially dangerous trajectories of flight vehicles and rockets before they impose an unacceptable risk to humans or assets. In the FTSnext project a system design and software prototype of an AFTS specifically for the international market of orbital microlaunchers was developed. The system design was obtained following the model-based system engineering approach. The onboard software prototype was implemented in MATLAB. Furthermore, a simulator was developed in Simulink and ASTOS to test the AFTS in nominal, failure, and near-failure trajectories. In all simulated failure trajectories, the FTSnext prototype triggers the desired termination action. The adaptability to several launchers and nominal trajectories can be shown. The performance of the core functions </span>sensor fusion and instantaneous impact point calculation were assessed with Monte Carlo simulations.</p></div>","PeriodicalId":37283,"journal":{"name":"Journal of Space Safety Engineering","volume":"11 1","pages":"Pages 67-73"},"PeriodicalIF":1.0000,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Space Safety Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S246889672400003X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0
Abstract
Autonomous Flight Termination Systems (AFTS) are used to terminate potentially dangerous trajectories of flight vehicles and rockets before they impose an unacceptable risk to humans or assets. In the FTSnext project a system design and software prototype of an AFTS specifically for the international market of orbital microlaunchers was developed. The system design was obtained following the model-based system engineering approach. The onboard software prototype was implemented in MATLAB. Furthermore, a simulator was developed in Simulink and ASTOS to test the AFTS in nominal, failure, and near-failure trajectories. In all simulated failure trajectories, the FTSnext prototype triggers the desired termination action. The adaptability to several launchers and nominal trajectories can be shown. The performance of the core functions sensor fusion and instantaneous impact point calculation were assessed with Monte Carlo simulations.