Mechanical properties and corrosion behavior of electron beam cold hearth melting high strength and high corrosion resistant Ti-0.3Mo-0.8Ni alloy with different states

IF 6.7 3区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of Science: Advanced Materials and Devices Pub Date : 2024-02-14 DOI:10.1016/j.jsamd.2024.100679
Meiyu Hou , Hongyan Wang , Peng Shao , Sheng Huang , Ping Ding , Yaoping Xu , Han Xiao , Xuan Chen
{"title":"Mechanical properties and corrosion behavior of electron beam cold hearth melting high strength and high corrosion resistant Ti-0.3Mo-0.8Ni alloy with different states","authors":"Meiyu Hou ,&nbsp;Hongyan Wang ,&nbsp;Peng Shao ,&nbsp;Sheng Huang ,&nbsp;Ping Ding ,&nbsp;Yaoping Xu ,&nbsp;Han Xiao ,&nbsp;Xuan Chen","doi":"10.1016/j.jsamd.2024.100679","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, a large size Ti-0.3Mo-0.8Ni (TA10) alloy ingot melted by electron beam cold hearth melting (EBCHM) technology was investigated. The microstructure, mechanical properties, and corrosion behavior of as-cast, hot-rolled, and annealed TA10 alloys were investigated. The results show that different states of TA10 alloys have different microstructure and properties. The microstructure of the as-cast TA10 alloy exhibits the Widmanstätten α phase, and the hot-rolled TA10 sheet shows a fibrous structure with an obvious rolling streamline. After 650 °C annealing, the intergranular β phase decreases, and most of the strip α phase changes to the equiaxed α phase. With the annealing temperature increasing to 840 °C, the microstructure gradually changed from an equiaxed structure to a duplex structure. The mechanical properties of the TA10 alloy were enhanced after hot-rolling with an increase in ultimate tensile strength from 386.5 MPa to 610 MPa. Additionally, the elongation increased from 15.6 % to 23.3 %. Upon annealing at varying temperatures, it was observed that the strength decreased, reaching to 423.5 MPa at 650 °C and 478.2 MPa at 840 °C, while the plasticity increased significantly, reaching to 26.5 % at 650 °C and 28.6 % at 840 °C. The improved strength was attributed to the better grain boundary slip of the equiaxed structure. The corrosion resistance of titanium alloys is closely connected with their microstructure. The results of the immersion corrosion test indicate that the samples in various states exhibit similar corrosion behavior. Additionally, the hot-rolled TA10 alloy shows the highest corrosion resistance, with a lower corrosion rate of 0.34459 mm/year. The as-cast TA10 alloy shows the lowest corrosion resistance, with a lower corrosion rate of 1.37559 mm/year.</p></div>","PeriodicalId":17219,"journal":{"name":"Journal of Science: Advanced Materials and Devices","volume":null,"pages":null},"PeriodicalIF":6.7000,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2468217924000108/pdfft?md5=8724b426f93af857fe76b662700f4781&pid=1-s2.0-S2468217924000108-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Science: Advanced Materials and Devices","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468217924000108","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, a large size Ti-0.3Mo-0.8Ni (TA10) alloy ingot melted by electron beam cold hearth melting (EBCHM) technology was investigated. The microstructure, mechanical properties, and corrosion behavior of as-cast, hot-rolled, and annealed TA10 alloys were investigated. The results show that different states of TA10 alloys have different microstructure and properties. The microstructure of the as-cast TA10 alloy exhibits the Widmanstätten α phase, and the hot-rolled TA10 sheet shows a fibrous structure with an obvious rolling streamline. After 650 °C annealing, the intergranular β phase decreases, and most of the strip α phase changes to the equiaxed α phase. With the annealing temperature increasing to 840 °C, the microstructure gradually changed from an equiaxed structure to a duplex structure. The mechanical properties of the TA10 alloy were enhanced after hot-rolling with an increase in ultimate tensile strength from 386.5 MPa to 610 MPa. Additionally, the elongation increased from 15.6 % to 23.3 %. Upon annealing at varying temperatures, it was observed that the strength decreased, reaching to 423.5 MPa at 650 °C and 478.2 MPa at 840 °C, while the plasticity increased significantly, reaching to 26.5 % at 650 °C and 28.6 % at 840 °C. The improved strength was attributed to the better grain boundary slip of the equiaxed structure. The corrosion resistance of titanium alloys is closely connected with their microstructure. The results of the immersion corrosion test indicate that the samples in various states exhibit similar corrosion behavior. Additionally, the hot-rolled TA10 alloy shows the highest corrosion resistance, with a lower corrosion rate of 0.34459 mm/year. The as-cast TA10 alloy shows the lowest corrosion resistance, with a lower corrosion rate of 1.37559 mm/year.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
不同状态下电子束冷炉熔炼高强度、高耐蚀性 Ti-0.3Mo-0.8Ni 合金的力学性能和腐蚀行为
本研究调查了采用电子束冷炉温熔炼(EBCHM)技术熔炼的大尺寸钛-0.3钼-0.8镍(TA10)合金铸锭。研究了原铸态、热轧态和退火态 TA10 合金的微观结构、机械性能和腐蚀行为。结果表明,不同状态的 TA10 合金具有不同的微观结构和性能。铸态 TA10 合金的显微组织呈现出 Widmanstätten α 相,而热轧的 TA10 板材则呈现出纤维状结构,具有明显的轧制流线。650 °C 退火后,晶间 β 相减少,大部分带材 α 相转变为等轴 α 相。随着退火温度升高到 840 ℃,微观结构逐渐从等轴结构转变为双相结构。热轧后,TA10 合金的机械性能得到提高,极限抗拉强度从 386.5 兆帕提高到 610 兆帕。此外,伸长率从 15.6% 增加到 23.3%。在不同温度下退火时,观察到强度有所下降,650 °C 时为 423.5 兆帕,840 °C 时为 478.2 兆帕,而塑性显著增加,650 °C 时为 26.5%,840 °C 时为 28.6%。强度的提高归因于等轴晶结构更好的晶界滑移。钛合金的耐腐蚀性与其微观结构密切相关。浸泡腐蚀试验的结果表明,不同状态下的样品表现出相似的腐蚀行为。此外,热轧 TA10 合金的耐腐蚀性最高,腐蚀速率较低,为 0.34459 毫米/年。铸造 TA10 合金的耐腐蚀性能最低,腐蚀速率较低,为 1.37559 毫米/年。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Science: Advanced Materials and Devices
Journal of Science: Advanced Materials and Devices Materials Science-Electronic, Optical and Magnetic Materials
CiteScore
11.90
自引率
2.50%
发文量
88
审稿时长
47 days
期刊介绍: In 1985, the Journal of Science was founded as a platform for publishing national and international research papers across various disciplines, including natural sciences, technology, social sciences, and humanities. Over the years, the journal has experienced remarkable growth in terms of quality, size, and scope. Today, it encompasses a diverse range of publications dedicated to academic research. Considering the rapid expansion of materials science, we are pleased to introduce the Journal of Science: Advanced Materials and Devices. This new addition to our journal series offers researchers an exciting opportunity to publish their work on all aspects of materials science and technology within the esteemed Journal of Science. With this development, we aim to revolutionize the way research in materials science is expressed and organized, further strengthening our commitment to promoting outstanding research across various scientific and technological fields.
期刊最新文献
Harnessing ambient sound: Different approaches to acoustic energy harvesting using triboelectric nanogenerators A novel carbon quantum dot (CQD) synthesis method with cost-effective reactants and a definitive indication: Hot bubble synthesis (HBBBS) Pt/ZnO and Pt/few-layer graphene/ZnO Schottky devices with Al ohmic contacts using Atlas simulation and machine learning Photothermal impacts induced by laser pulse in a 2D semiconducting medium with temperature-dependent properties under strain–temperature rate-dependent theory Comparative analysis of microlens array formation in fused silica glass by laser: Femtosecond versus picosecond pulses
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1