FORECASTING THE ELECTRICITY CONSUMPTIONS OF PLN UP3 CENGKARENG USING DEEP LEARNING

Novia Dewi, Jan Everhard Riwurohi
{"title":"FORECASTING THE ELECTRICITY CONSUMPTIONS OF PLN UP3 CENGKARENG USING DEEP LEARNING","authors":"Novia Dewi, Jan Everhard Riwurohi","doi":"10.32736/sisfokom.v13i1.1849","DOIUrl":null,"url":null,"abstract":"The consumption of electrical energy for the community every year has increased including the electricity consumption of PLN UP3 Cengkareng customers. Therefore, PLN UP3 Cengkareng must supply electricity to customers in all categories such as Social Category, Household Category, Business Category, Industry Category and Government Category. With customer needs that continue to increase, it is necessary to forecast future electricity needs, so that PLN UP3 Cengkareng can provide the required electrical power. For this reason, it is necessary to predict the electricity demand. This research was conducted to forecast the electricity demand of UP3 Cengkareng by using the Deep Learning Model Long Short-Term Memory (LSTM). The data set used in this study was taken from the PLN UP3 Cengkareng information system, for 10 years, the period from 2012 to 2021. The data used is divided into 2 categories, namely 70% training data and 30% testing data. The results obtained from this prediction are 96,689, with an average neuron value of 32 and an epoch value of 10.","PeriodicalId":517030,"journal":{"name":"Jurnal Sisfokom (Sistem Informasi dan Komputer)","volume":"74 26","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Sisfokom (Sistem Informasi dan Komputer)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32736/sisfokom.v13i1.1849","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The consumption of electrical energy for the community every year has increased including the electricity consumption of PLN UP3 Cengkareng customers. Therefore, PLN UP3 Cengkareng must supply electricity to customers in all categories such as Social Category, Household Category, Business Category, Industry Category and Government Category. With customer needs that continue to increase, it is necessary to forecast future electricity needs, so that PLN UP3 Cengkareng can provide the required electrical power. For this reason, it is necessary to predict the electricity demand. This research was conducted to forecast the electricity demand of UP3 Cengkareng by using the Deep Learning Model Long Short-Term Memory (LSTM). The data set used in this study was taken from the PLN UP3 Cengkareng information system, for 10 years, the period from 2012 to 2021. The data used is divided into 2 categories, namely 70% training data and 30% testing data. The results obtained from this prediction are 96,689, with an average neuron value of 32 and an epoch value of 10.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用深度学习预测 PEN UP3 Cengkareng 的用电量
包括 PLN UP3 Cengkareng 客户的用电量在内,社会的电能消耗量每年都在增加。因此,PLN UP3 Cengkareng 必须向所有类别的客户供电,如社会类别、家庭类别、商业类别、工业类别和政府类别。随着客户需求的不断增加,有必要预测未来的电力需求,以便 PLN UP3 Cengkareng 能够提供所需的电力。因此,有必要对电力需求进行预测。本研究通过使用深度学习模型长短期记忆(LSTM)来预测 UP3 Cengkareng 的电力需求。本研究使用的数据集来自 PLN UP3 Cengkareng 信息系统,时间跨度为 10 年,即 2012 年至 2021 年。使用的数据分为两类,即 70% 的训练数据和 30% 的测试数据。预测结果为 96 689,神经元平均值为 32,epoch 值为 10。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Factors Influencing Acceptance of ILMU E-Learning Among Lecturers: An Empirical Study Based on UTAUT Model Detection of Rice Leaf Pests Based on Images with Convolution Neural Network in Yollo v8 Enterprise Architecture Planning Pada Industri Otomotif Pitcar Service Menggunakan Odoo Information Technology Security Audit at the YDSF National Zakat Institution Using the ISO 27001 Framework Data-Driven Strategies for Fuel Distribution in Indonesia: A Case Study of PT Pertamina Patra Niaga
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1