Evaluating the Performance of Mixed Zero-Inflated Poisson Regression Models with Time-dependent and Time-independent Covariates

Gadir Alomair
{"title":"Evaluating the Performance of Mixed Zero-Inflated Poisson Regression Models with Time-dependent and Time-independent Covariates","authors":"Gadir Alomair","doi":"10.37575/b/sci/230054","DOIUrl":null,"url":null,"abstract":"One of the issues that researchers may encounter in count data is having many zeros. One of the solutions to model these data is using zero-inflated Poisson (ZIP) regression models. Recently, researchers have started to model longitudinal count data with time-dependent covariates. However, it has not been considered whether a model with time-dependent covariates provides a better fit than a model with time-independent covariates. In this paper, the fit between a mixed ZIP model with time-dependent covariates and a mixed ZIP model with time-independent covariates is compared using simulation. Using the deviance information criterion as a measure of fit, we found that the model with time-dependent covariates exhibits a better fit than the model with time-independent covariates.\nKEYWORDS\ncorrelated data, count data, excess zeros, longitudinal, mixed models, model fit","PeriodicalId":517170,"journal":{"name":"Scientific Journal of King Faisal University: Basic and Applied Sciences","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Journal of King Faisal University: Basic and Applied Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37575/b/sci/230054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

One of the issues that researchers may encounter in count data is having many zeros. One of the solutions to model these data is using zero-inflated Poisson (ZIP) regression models. Recently, researchers have started to model longitudinal count data with time-dependent covariates. However, it has not been considered whether a model with time-dependent covariates provides a better fit than a model with time-independent covariates. In this paper, the fit between a mixed ZIP model with time-dependent covariates and a mixed ZIP model with time-independent covariates is compared using simulation. Using the deviance information criterion as a measure of fit, we found that the model with time-dependent covariates exhibits a better fit than the model with time-independent covariates. KEYWORDS correlated data, count data, excess zeros, longitudinal, mixed models, model fit
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
评估与时间相关和与时间无关的变量混合零膨胀泊松回归模型的性能
在计数数据中,研究人员可能会遇到的问题之一就是有很多零。对这些数据建模的解决方案之一是使用零膨胀泊松(ZIP)回归模型。最近,研究人员开始使用随时间变化的协变量对纵向计数数据建模。然而,与时间无关协变量模型相比,时间无关协变量模型是否能提供更好的拟合效果,这一点还没有被考虑过。本文通过模拟比较了具有时间依赖性协变量的混合 ZIP 模型和具有时间非依赖性协变量的混合 ZIP 模型之间的拟合效果。使用偏差信息标准作为拟合度量,我们发现,与时间无关的协变量模型相比,与时间无关的协变量模型具有更好的拟合度。 关键词:相关数据、计数数据、过量零、纵向、混合模型、模型拟合度
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Study of the Nuclear Structure Properties in Strontium (90,92,94Sr) Isotopes Using Nuclear Shell-model Calculations The Effect of Alcoholic Extracts of Strawberries and Green Tea on Enterococcus faecalis Isolated from Urinary Tract Infections Impact of Water Deficit and Virtual Water Trade on the Costs of Producing and Exporting Saudi Dates Factors affecting the costs of broiler chicken production in light of urgent international variables Adaptive Kalman Filter: Noise Reduction in Diagonal Drawings on Stylus/Pen Touchscreens for Enhanced Precision
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1