Ming Xing Wang, Jeoung Kun Kim, Jin-Woo Choi, Donghwi Park, Min Cheol Chang
{"title":"Deep learning algorithm for automatically measuring Cobb angle in patients with idiopathic scoliosis.","authors":"Ming Xing Wang, Jeoung Kun Kim, Jin-Woo Choi, Donghwi Park, Min Cheol Chang","doi":"10.1007/s00586-023-08024-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>The Cobb angle is a standard measurement to qualify and track the progression of scoliosis. However, the Cobb angle has high inter- and intra-observer variability. Consequently, its measurement varies with vertebrae and may even differ when the same vertebra is measured. Therefore, it is not constant and differs with measurements. This study aimed to develop a deep learning model that automatically measures the Cobb angle. The deep learning model for identifying vertebrae on spine radiographs was developed.</p><p><strong>Methods: </strong>The dataset consisted of 297 images that were divided into two subsets for training and validation. Two hundred and twenty-seven images (76.4%) were used to train the model, while 70 images (23.6%) were used as the validation dataset. Absolut error between the measurements by the observer and developed deep learning model and intraclass correlation coefficient (ICC).</p><p><strong>Results: </strong>The average absolute error between the measurements was 1.97° with a standard deviation of 1.57°. In addition, 95.9% of the angles had an absolute error of less than 5°. The ICC was calculated to assess the model's reliability further. The ICC was 0.981, indicating excellent reliability.</p><p><strong>Conclusions: </strong>The authors believe the model will be useful in clinical practice by relieving clinicians of the burden of having to manually compute the Cobb angle. Further studies are needed to enhance the accuracy and versatility of this deep learning model.</p>","PeriodicalId":12323,"journal":{"name":"European Spine Journal","volume":" ","pages":"4155-4163"},"PeriodicalIF":2.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Spine Journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00586-023-08024-5","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/17 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: The Cobb angle is a standard measurement to qualify and track the progression of scoliosis. However, the Cobb angle has high inter- and intra-observer variability. Consequently, its measurement varies with vertebrae and may even differ when the same vertebra is measured. Therefore, it is not constant and differs with measurements. This study aimed to develop a deep learning model that automatically measures the Cobb angle. The deep learning model for identifying vertebrae on spine radiographs was developed.
Methods: The dataset consisted of 297 images that were divided into two subsets for training and validation. Two hundred and twenty-seven images (76.4%) were used to train the model, while 70 images (23.6%) were used as the validation dataset. Absolut error between the measurements by the observer and developed deep learning model and intraclass correlation coefficient (ICC).
Results: The average absolute error between the measurements was 1.97° with a standard deviation of 1.57°. In addition, 95.9% of the angles had an absolute error of less than 5°. The ICC was calculated to assess the model's reliability further. The ICC was 0.981, indicating excellent reliability.
Conclusions: The authors believe the model will be useful in clinical practice by relieving clinicians of the burden of having to manually compute the Cobb angle. Further studies are needed to enhance the accuracy and versatility of this deep learning model.
期刊介绍:
"European Spine Journal" is a publication founded in response to the increasing trend toward specialization in spinal surgery and spinal pathology in general. The Journal is devoted to all spine related disciplines, including functional and surgical anatomy of the spine, biomechanics and pathophysiology, diagnostic procedures, and neurology, surgery and outcomes. The aim of "European Spine Journal" is to support the further development of highly innovative spine treatments including but not restricted to surgery and to provide an integrated and balanced view of diagnostic, research and treatment procedures as well as outcomes that will enhance effective collaboration among specialists worldwide. The “European Spine Journal” also participates in education by means of videos, interactive meetings and the endorsement of educative efforts.
Official publication of EUROSPINE, The Spine Society of Europe