OcBSA: An NGS-based bulk segregant analysis tool for outcross populations.

IF 17.1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Molecular Plant Pub Date : 2024-04-01 Epub Date: 2024-02-17 DOI:10.1016/j.molp.2024.02.011
Lingkui Zhang, Yanfeng Duan, Zewei Zhang, Lei Zhang, Shumin Chen, Chengcheng Cai, Shaoguang Duan, Kang Zhang, Guangcun Li, Feng Cheng
{"title":"OcBSA: An NGS-based bulk segregant analysis tool for outcross populations.","authors":"Lingkui Zhang, Yanfeng Duan, Zewei Zhang, Lei Zhang, Shumin Chen, Chengcheng Cai, Shaoguang Duan, Kang Zhang, Guangcun Li, Feng Cheng","doi":"10.1016/j.molp.2024.02.011","DOIUrl":null,"url":null,"abstract":"<p><p>Constructing inbred lines for self-incompatible species and species with long generation times is challenging, making the use of F<sub>1</sub> outcross/segregating populations the main strategy for genetic studies of such species. However, there is a lack of dedicated algorithms/tools for rapid quantitative trait locus (QTL) mapping using the F<sub>1</sub> populations. To this end, we have designed and developed an algorithm/tool called OcBSA specifically for QTL mapping of F<sub>1</sub> populations. OcBSA transforms the four-haplotype inheritance problem from the two heterozygous diploid parents of the F<sub>1</sub> population into the two-haplotype inheritance problem common in current genetic studies by removing the two haplotypes from the heterozygous parent that do not contribute to phenotype segregation in the F<sub>1</sub> population. Testing of OcBSA on 1800 simulated F<sub>1</sub> populations demonstrated its advantages over other currently available tools in terms of sensitivity and accuracy. In addition, the broad applicability of OcBSA was validated by QTL mapping using seven reported F<sub>1</sub> populations of apple, pear, peach, citrus, grape, tea, and rice. We also used OcBSA to map the QTL for flower color in a newly constructed F<sub>1</sub> population of potato generated in this study. The OcBSA mapping result was verified by the insertion or deletion markers to be consistent with a previously reported locus harboring the ANTHOCYANIN 2 gene, which regulates potato flower color. Taken together, these results highlight the power and broad utility of OcBSA for QTL mapping using F<sub>1</sub> populations and thus a great potential for functional gene mining in outcrossing species. For ease of use, we have developed both Windows and Linux versions of OcBSA, which are freely available at: https://gitee.com/Bioinformaticslab/OcBSA.</p>","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":null,"pages":null},"PeriodicalIF":17.1000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Plant","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.molp.2024.02.011","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/17 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Constructing inbred lines for self-incompatible species and species with long generation times is challenging, making the use of F1 outcross/segregating populations the main strategy for genetic studies of such species. However, there is a lack of dedicated algorithms/tools for rapid quantitative trait locus (QTL) mapping using the F1 populations. To this end, we have designed and developed an algorithm/tool called OcBSA specifically for QTL mapping of F1 populations. OcBSA transforms the four-haplotype inheritance problem from the two heterozygous diploid parents of the F1 population into the two-haplotype inheritance problem common in current genetic studies by removing the two haplotypes from the heterozygous parent that do not contribute to phenotype segregation in the F1 population. Testing of OcBSA on 1800 simulated F1 populations demonstrated its advantages over other currently available tools in terms of sensitivity and accuracy. In addition, the broad applicability of OcBSA was validated by QTL mapping using seven reported F1 populations of apple, pear, peach, citrus, grape, tea, and rice. We also used OcBSA to map the QTL for flower color in a newly constructed F1 population of potato generated in this study. The OcBSA mapping result was verified by the insertion or deletion markers to be consistent with a previously reported locus harboring the ANTHOCYANIN 2 gene, which regulates potato flower color. Taken together, these results highlight the power and broad utility of OcBSA for QTL mapping using F1 populations and thus a great potential for functional gene mining in outcrossing species. For ease of use, we have developed both Windows and Linux versions of OcBSA, which are freely available at: https://gitee.com/Bioinformaticslab/OcBSA.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
OcBSA:基于 NGS 的外交群体群体分离分析工具。
为自交不亲和物种和世代时间较长的物种构建近交系具有挑战性,因此使用 F1 外交/分离群体是此类物种遗传研究的主要策略。然而,目前缺乏利用 F1 群体快速绘制 QTL 图谱的专用算法/工具。为此,我们设计并开发了一种名为 OcBSA 的算法/工具,专门用于 F1 群体的 QTL 图谱绘制。OcBSA 将 F1 群体两个杂合二倍体亲本的四个单倍型遗传问题转化为当前遗传研究中常见的两个单倍型遗传问题,方法是去除杂合亲本中对 F1 群体表型分离无贡献的两个单倍型。对 1,800 个模拟 F1 群体进行的 OcBSA 测试表明,它在灵敏度和准确性方面都优于其他现有工具。此外,通过使用苹果、梨、桃、柑橘、葡萄、茶叶和水稻的七个已报道 F1 群体进行 QTL 绘图,验证了 OcBSA 的广泛适用性。我们还利用 OcBSA 在为本研究新建的马铃薯 F1 群体中绘制了花色 QTL 图谱。OcBSA 的作图结果得到了 InDel 标记的验证,并且与之前报道的一个含有 AN2 基因的位点一致,该基因调控马铃薯的花色。综上所述,这些结果凸显了 OcBSA 利用 F1 群体进行 QTL 测绘的强大功能和广泛用途,因此它有望在主要通过外交繁殖的物种中进行功能基因挖掘。为了方便使用,我们开发了 Windows 和 Linux 版本的 OcBSA,可在 https://gitee.com/Bioinformaticslab/OcBSA 免费获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Plant
Molecular Plant 植物科学-生化与分子生物学
CiteScore
37.60
自引率
2.20%
发文量
1784
审稿时长
1 months
期刊介绍: Molecular Plant is dedicated to serving the plant science community by publishing novel and exciting findings with high significance in plant biology. The journal focuses broadly on cellular biology, physiology, biochemistry, molecular biology, genetics, development, plant-microbe interaction, genomics, bioinformatics, and molecular evolution. Molecular Plant publishes original research articles, reviews, Correspondence, and Spotlights on the most important developments in plant biology.
期刊最新文献
Architecture of the ATP-driven motor for protein import into chloroplasts. Mirids secrete a TOPLESS targeting protein to enhance JA-mediated defense and gossypol accumulation for antagonizing cotton bollworms on cotton plants. On the evolution and genetic diversity of the bread wheat D genome. Sucrose-responsive osmoregulation of plant cell size by a long non-coding RNA. The metal tolerance protein OsMTP11 facilitates cadmium sequestration in the vacuoles of leaf vascular cells for restricting its translocation into rice grains.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1