首页 > 最新文献

Molecular Plant最新文献

英文 中文
From the T2T cotton genome to a tripartite regulatory module governing embryo folding. 从 T2T 棉花基因组到控制胚胎折叠的三方调控模块。
IF 17.1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-09-03 DOI: 10.1016/j.molp.2024.08.011
Xiaoya Chen
{"title":"From the T2T cotton genome to a tripartite regulatory module governing embryo folding.","authors":"Xiaoya Chen","doi":"10.1016/j.molp.2024.08.011","DOIUrl":"https://doi.org/10.1016/j.molp.2024.08.011","url":null,"abstract":"","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":null,"pages":null},"PeriodicalIF":17.1,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142133262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Increasing seed lint fibre density for promoting cotton yield: opportunities and challenges. 提高籽棉纤维密度以提高棉花产量:机遇与挑战。
IF 17.1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-09-02 DOI: 10.1016/j.molp.2024.08.010
Tianlun Zhao, Jinhong Chen, Shuijin Zhu, Qian-Hao Zhu

High seed lint fibre density is proposed as one of the breeding objectives for boosting cotton fibre yield. We identify the sources of potential lint fibre cells and discuss the opportunities and challenges involved in realizing the goal.

高皮棉纤维密度是提高棉花纤维产量的育种目标之一。我们确定了潜在皮棉纤维细胞的来源,并讨论了实现这一目标所面临的机遇和挑战。
{"title":"Increasing seed lint fibre density for promoting cotton yield: opportunities and challenges.","authors":"Tianlun Zhao, Jinhong Chen, Shuijin Zhu, Qian-Hao Zhu","doi":"10.1016/j.molp.2024.08.010","DOIUrl":"https://doi.org/10.1016/j.molp.2024.08.010","url":null,"abstract":"<p><p>High seed lint fibre density is proposed as one of the breeding objectives for boosting cotton fibre yield. We identify the sources of potential lint fibre cells and discuss the opportunities and challenges involved in realizing the goal.</p>","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":null,"pages":null},"PeriodicalIF":17.1,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142120286","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Navigating biomolecular condensates in plants from patterns to functions. 从模式到功能的植物凝结物导航。
IF 17.1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-09-02 Epub Date: 2024-08-14 DOI: 10.1016/j.molp.2024.08.001
Yansong Miao, Monika Chodasiewicz, Xiaofeng Fang
{"title":"Navigating biomolecular condensates in plants from patterns to functions.","authors":"Yansong Miao, Monika Chodasiewicz, Xiaofeng Fang","doi":"10.1016/j.molp.2024.08.001","DOIUrl":"10.1016/j.molp.2024.08.001","url":null,"abstract":"","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":null,"pages":null},"PeriodicalIF":17.1,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141982802","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Efficient and multiplex gene upregulation in plants through CRISPR-Cas-mediated knockin of enhancers. 通过 CRISPR/Cas 介导的增强子敲入技术,实现植物基因的高效和多重上调。
IF 17.1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-09-02 Epub Date: 2024-07-23 DOI: 10.1016/j.molp.2024.07.009
Qi Yao, Rundong Shen, Yang Shao, Yifu Tian, Peijin Han, Xuening Zhang, Jian-Kang Zhu, Yuming Lu

Gene upregulation through genome editing is important for plant research and breeding. Targeted insertion of short transcriptional enhancers (STEs) into gene promoters may offer a universal solution akin to transgene-mediated overexpression while avoiding the drawbacks associated with transgenesis. Here, we introduce an "in locus activation" technique in rice that leverages well-characterized STEs for refined, heritable, and multiplexed gene upregulation. To address the scarcity of potent enhancers, we developed a large-scale mining approach and discovered a suite of STEs that are capable of enhancing gene expression in rice protoplasts. The in locus integration of these STEs into eight rice genes resulted in substantial transcriptional upregulation in the edited plants, with up to 869.1-fold increases in their transcript levels. Employing a variety of STEs, we achieved delicate control of gene expression, enabling the fine-tuning of key phenotypic traits such as plant height. Our approach also enabled efficient multiplexed gene upregulation, with up to four genes activated simultaneously, significantly enhancing the nicotinamide mononucleotide metabolic pathway. Importantly, heritability studies from the T0 to T3 generations confirmed the stable and heritable nature of STE-driven gene activation. Collectively, our work demonstrates that coupled with STE mining, leveraging genome editing for in locus activation and gene upregulation holds great promise to be widely adopted in fundamental plant research and crop breeding.

通过基因组编辑进行基因上调对植物研究和育种非常重要。将短转录增强子(STEs)定向插入基因启动子可能提供一种类似于转基因介导的过表达的通用解决方案,同时避免了与转基因相关的缺点。在这里,我们在水稻中引入了一种 "病灶内激活 "技术,利用专门筛选的 STEs 进行精细、可遗传和多重的基因上调。为了解决强效增强子稀缺的问题,我们开发了一种大规模挖掘方法,发现了一系列能够增强水稻原生质体中基因表达的 STE。将这些 STEs 在病灶内整合到 8 个水稻基因中可显著提高转录水平,编辑后的植株转录水平最高可提高 869.1 倍。通过使用多种 STE,我们实现了对基因表达的精细控制,从而对植株高度等关键表型性状进行了微调。我们的方法还实现了高效的多重基因上调,多达四个基因同时被激活,显著增强了烟酰胺单核苷酸(NMN)代谢途径。重要的是,从 T0 代到 T3 代的遗传性研究证实了 STE 驱动基因激活的稳定性和遗传性。结合我们的 STE 挖掘技术,病灶内激活有望使基因上调成为基因组编辑在植物研究和育种中的主要应用。
{"title":"Efficient and multiplex gene upregulation in plants through CRISPR-Cas-mediated knockin of enhancers.","authors":"Qi Yao, Rundong Shen, Yang Shao, Yifu Tian, Peijin Han, Xuening Zhang, Jian-Kang Zhu, Yuming Lu","doi":"10.1016/j.molp.2024.07.009","DOIUrl":"10.1016/j.molp.2024.07.009","url":null,"abstract":"<p><p>Gene upregulation through genome editing is important for plant research and breeding. Targeted insertion of short transcriptional enhancers (STEs) into gene promoters may offer a universal solution akin to transgene-mediated overexpression while avoiding the drawbacks associated with transgenesis. Here, we introduce an \"in locus activation\" technique in rice that leverages well-characterized STEs for refined, heritable, and multiplexed gene upregulation. To address the scarcity of potent enhancers, we developed a large-scale mining approach and discovered a suite of STEs that are capable of enhancing gene expression in rice protoplasts. The in locus integration of these STEs into eight rice genes resulted in substantial transcriptional upregulation in the edited plants, with up to 869.1-fold increases in their transcript levels. Employing a variety of STEs, we achieved delicate control of gene expression, enabling the fine-tuning of key phenotypic traits such as plant height. Our approach also enabled efficient multiplexed gene upregulation, with up to four genes activated simultaneously, significantly enhancing the nicotinamide mononucleotide metabolic pathway. Importantly, heritability studies from the T0 to T3 generations confirmed the stable and heritable nature of STE-driven gene activation. Collectively, our work demonstrates that coupled with STE mining, leveraging genome editing for in locus activation and gene upregulation holds great promise to be widely adopted in fundamental plant research and crop breeding.</p>","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":null,"pages":null},"PeriodicalIF":17.1,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141759924","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
AlphaFold-guided redesign of a plant pectin methylesterase inhibitor for broad-spectrum disease resistance. 以 AlphaFold 为指导重新设计一种植物果胶甲基酯酶抑制剂,以实现广谱抗病性。
IF 17.1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-09-02 Epub Date: 2024-07-18 DOI: 10.1016/j.molp.2024.07.008
Yeqiang Xia, Guangzheng Sun, Junhua Xiao, Xinyi He, Haibin Jiang, Zhichao Zhang, Qi Zhang, Kainan Li, Sicong Zhang, Xuechao Shi, Zhaoyun Wang, Lin Liu, Yao Zhao, Yuheng Yang, Kaixuan Duan, Wenwu Ye, Yiming Wang, Suomeng Dong, Yan Wang, Zhenchuan Ma, Yuanchao Wang

Plant cell walls are a critical site where plants and pathogens continuously struggle for physiological dominance. Here we show that dynamic remodeling of pectin methylesterification of plant cell walls is a component of the physiological and co-evolutionary struggles between hosts and pathogens. A pectin methylesterase (PsPME1) secreted by Phytophthora sojae decreases the degree of pectin methylesterification, thus synergizing with an endo-polygalacturonase (PsPG1) to weaken plant cell walls. To counter PsPME1-mediated susceptibility, a plant-derived pectin methylesterase inhibitor protein, GmPMI1, protects pectin to maintain a high methylesterification status. GmPMI1 protects plant cell walls from enzymatic degradation by inhibiting both soybean and P. sojae pectin methylesterases during infection. However, constitutive expression of GmPMI1 disrupted the trade-off between host growth and defense responses. We therefore used AlphaFold structure tools to design a modified form of GmPMI1 (GmPMI1R) that specifically targets and inhibits pectin methylesterases secreted from pathogens but not from plants. Transient expression of GmPMI1R enhanced plant resistance to oomycete and fungal pathogens. In summary, our work highlights the biochemical modification of the cell wall as an important focal point in the physiological and co-evolutionary conflict between hosts and microbes, providing an important proof of concept that AI-driven structure-based tools can accelerate the development of new strategies for plant protection.

植物细胞壁是植物和病原体不断争夺生理主导地位的关键场所。在这里,我们展示了植物细胞壁果胶甲基化的动态重塑是宿主与病原体之间生理和共同进化斗争的一个组成部分。一种Phytophthora sojae分泌的果胶甲酯化酶(PsPME1)会降低果胶的甲酯化程度,从而与一种内聚半乳糖醛酸酶(PsPG1)协同削弱植物细胞壁。为了对抗 PsPME1 介导的易感性,一种源自植物的果胶甲基酯酶抑制蛋白 GmPMI1 可以保护果胶,使其保持较高的甲基酯化状态。在感染过程中,GmPMI1 可抑制大豆和 P. sojae 的果胶甲基酯酶,从而保护植物细胞壁免受酶降解。然而,GmPMI1 的组成型表达破坏了宿主生长和防御反应之间的平衡。因此,我们利用 AlphaFold 结构工具设计了一种改良形式的 GmPMI1(GmPMI1R),它能特异性地靶向并抑制病原体分泌的果胶甲基酯酶,而不抑制植物分泌的果胶甲基酯酶。GmPMI1R 的瞬时表达增强了植物对卵菌和真菌病原体的抗性。总之,我们的工作凸显了细胞壁的生化修饰是宿主与微生物之间生理和共同进化冲突的一个重要焦点,同时也是一个重要的概念验证,证明了人工智能驱动的基于结构的工具的快速发展可以加速植物保护新策略的预测。
{"title":"AlphaFold-guided redesign of a plant pectin methylesterase inhibitor for broad-spectrum disease resistance.","authors":"Yeqiang Xia, Guangzheng Sun, Junhua Xiao, Xinyi He, Haibin Jiang, Zhichao Zhang, Qi Zhang, Kainan Li, Sicong Zhang, Xuechao Shi, Zhaoyun Wang, Lin Liu, Yao Zhao, Yuheng Yang, Kaixuan Duan, Wenwu Ye, Yiming Wang, Suomeng Dong, Yan Wang, Zhenchuan Ma, Yuanchao Wang","doi":"10.1016/j.molp.2024.07.008","DOIUrl":"10.1016/j.molp.2024.07.008","url":null,"abstract":"<p><p>Plant cell walls are a critical site where plants and pathogens continuously struggle for physiological dominance. Here we show that dynamic remodeling of pectin methylesterification of plant cell walls is a component of the physiological and co-evolutionary struggles between hosts and pathogens. A pectin methylesterase (PsPME1) secreted by Phytophthora sojae decreases the degree of pectin methylesterification, thus synergizing with an endo-polygalacturonase (PsPG1) to weaken plant cell walls. To counter PsPME1-mediated susceptibility, a plant-derived pectin methylesterase inhibitor protein, GmPMI1, protects pectin to maintain a high methylesterification status. GmPMI1 protects plant cell walls from enzymatic degradation by inhibiting both soybean and P. sojae pectin methylesterases during infection. However, constitutive expression of GmPMI1 disrupted the trade-off between host growth and defense responses. We therefore used AlphaFold structure tools to design a modified form of GmPMI1 (GmPMI1R) that specifically targets and inhibits pectin methylesterases secreted from pathogens but not from plants. Transient expression of GmPMI1R enhanced plant resistance to oomycete and fungal pathogens. In summary, our work highlights the biochemical modification of the cell wall as an important focal point in the physiological and co-evolutionary conflict between hosts and microbes, providing an important proof of concept that AI-driven structure-based tools can accelerate the development of new strategies for plant protection.</p>","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":null,"pages":null},"PeriodicalIF":17.1,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141731355","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genetic variation in a heat shock transcription factor modulates cold tolerance in maize. 热休克转录因子的遗传变异调节玉米的耐寒性。
IF 17.1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-09-02 Epub Date: 2024-08-07 DOI: 10.1016/j.molp.2024.07.015
Lei Gao, Lingling Pan, Yiting Shi, Rong Zeng, Minze Li, Zhuoyang Li, Xuan Zhang, Xiaoming Zhao, Xinru Gong, Wei Huang, Xiaohong Yang, Jinsheng Lai, Jianru Zuo, Zhizhong Gong, Xiqing Wang, Weiwei Jin, Zhaobin Dong, Shuhua Yang

Understanding how maize (Zea mays) responds to cold stress is crucial for facilitating breeding programs of cold-tolerant varieties. Despite extensive utilization of the genome-wide association study (GWAS) approach for exploring favorable natural alleles associated with maize cold tolerance, few studies have successfully identified candidate genes that contribute to maize cold tolerance. In this study, we used a diverse panel of inbred maize lines collected from different germplasm sources to perform a GWAS on variations in the relative injured area of maize true leaves during cold stress-a trait very closely correlated with maize cold tolerance. We identified HSF21, which encodes a B-class heat shock transcription factor (HSF) that positively regulates cold tolerance at both the seedling and germination stages. Natural variations in the promoter of the cold-tolerant HSF21Hap1 allele led to increased HSF21 expression under cold stress by inhibiting binding of the basic leucine zipper bZIP68 transcription factor, a negative regulator of cold tolerance. By integrating transcriptome deep sequencing, DNA affinity purification sequencing, and targeted lipidomic analysis, we revealed the function of HSF21 in regulating lipid metabolism homeostasis to modulate cold tolerance in maize. In addition, we found that HSF21 confers maize cold tolerance without incurring yield penalties. Collectively, this study establishes HSF21 as a key regulator that enhances cold tolerance in maize, providing valuable genetic resources for breeding of cold-tolerant maize varieties.

了解玉米(Zea mays L.)如何应对冷胁迫对于促进耐寒品种的育种计划至关重要。尽管全基因组关联研究(GWAS)方法被广泛用于探索与玉米耐寒性相关的有利天然等位基因,但成功鉴定出有助于玉米耐寒性的候选基因的报道却很少。在本研究中,我们利用从不同种质资源中收集的各种玉米近交系,对玉米真叶在冷胁迫时相对受伤面积的变化(这是与玉米耐寒性最密切相关的性状)进行了基因关联分析,并鉴定出编码B类热休克转录因子的HSF21,它在幼苗和发芽阶段都对耐寒性有正向调控作用。耐寒的 HSF21Hap1 等位基因启动子中的自然变异通过抑制耐寒的负调控因子 bZIP68 转录因子的结合,导致 HSF21 在冷胁迫下的表达增加。通过整合转录组深度测序、DNA亲和纯化测序和靶向脂质体分析,我们揭示了HSF21在调节脂质代谢平衡以调节玉米耐寒性方面的功能。此外,HSF21 在赋予玉米耐寒性的同时不会造成产量损失。这项研究由此确定了 HSF21 是增强玉米耐寒性的关键调控因子,从而为培育耐寒玉米品种提供了宝贵的遗传资源。
{"title":"Genetic variation in a heat shock transcription factor modulates cold tolerance in maize.","authors":"Lei Gao, Lingling Pan, Yiting Shi, Rong Zeng, Minze Li, Zhuoyang Li, Xuan Zhang, Xiaoming Zhao, Xinru Gong, Wei Huang, Xiaohong Yang, Jinsheng Lai, Jianru Zuo, Zhizhong Gong, Xiqing Wang, Weiwei Jin, Zhaobin Dong, Shuhua Yang","doi":"10.1016/j.molp.2024.07.015","DOIUrl":"10.1016/j.molp.2024.07.015","url":null,"abstract":"<p><p>Understanding how maize (Zea mays) responds to cold stress is crucial for facilitating breeding programs of cold-tolerant varieties. Despite extensive utilization of the genome-wide association study (GWAS) approach for exploring favorable natural alleles associated with maize cold tolerance, few studies have successfully identified candidate genes that contribute to maize cold tolerance. In this study, we used a diverse panel of inbred maize lines collected from different germplasm sources to perform a GWAS on variations in the relative injured area of maize true leaves during cold stress-a trait very closely correlated with maize cold tolerance. We identified HSF21, which encodes a B-class heat shock transcription factor (HSF) that positively regulates cold tolerance at both the seedling and germination stages. Natural variations in the promoter of the cold-tolerant HSF21<sup>Hap1</sup> allele led to increased HSF21 expression under cold stress by inhibiting binding of the basic leucine zipper bZIP68 transcription factor, a negative regulator of cold tolerance. By integrating transcriptome deep sequencing, DNA affinity purification sequencing, and targeted lipidomic analysis, we revealed the function of HSF21 in regulating lipid metabolism homeostasis to modulate cold tolerance in maize. In addition, we found that HSF21 confers maize cold tolerance without incurring yield penalties. Collectively, this study establishes HSF21 as a key regulator that enhances cold tolerance in maize, providing valuable genetic resources for breeding of cold-tolerant maize varieties.</p>","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":null,"pages":null},"PeriodicalIF":17.1,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141879074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Candy or poison: Plant metabolites as swing factors against microbes. 糖果还是毒药植物代谢物是对抗微生物的摇摆因子
IF 17.1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-09-02 Epub Date: 2024-08-18 DOI: 10.1016/j.molp.2024.08.005
Liyuan Wang, Yu Xia, Yingnan Hou
{"title":"Candy or poison: Plant metabolites as swing factors against microbes.","authors":"Liyuan Wang, Yu Xia, Yingnan Hou","doi":"10.1016/j.molp.2024.08.005","DOIUrl":"10.1016/j.molp.2024.08.005","url":null,"abstract":"","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":null,"pages":null},"PeriodicalIF":17.1,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142000416","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ubiquitination-mediated regulation of receptor-like kinases in symbiosis and immunity. 共生和免疫中类似受体激酶的泛素化调控
IF 17.1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-09-02 Epub Date: 2024-07-30 DOI: 10.1016/j.molp.2024.07.013
David Landry, Benoit Lefebvre
{"title":"Ubiquitination-mediated regulation of receptor-like kinases in symbiosis and immunity.","authors":"David Landry, Benoit Lefebvre","doi":"10.1016/j.molp.2024.07.013","DOIUrl":"10.1016/j.molp.2024.07.013","url":null,"abstract":"","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":null,"pages":null},"PeriodicalIF":17.1,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141856035","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The OsNAC41-RoLe1-OsAGAP module promotes root development and drought tolerance in upland rice. OsNAC41-RoLe1-OsAGAP 模块促进高原水稻根系发育和耐旱性。
IF 17.1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-09-02 DOI: 10.1016/j.molp.2024.09.002
Shichen Han, Yulong Wang, Yingxiu Li, Rui Zhu, Yunsong Gu, Jin Li, Haifeng Guo, Wei Ye, Hafiz Ghualm Nabi, Tao Yang, Yanming Wang, Pengli Liu, Junzhi Duan, Xingming Sun, Zhanying Zhang, Hongliang Zhang, Zichao Li, Jinjie Li

Drought is a major environmental stress limiting crop yields worldwide. Upland rice (Oryza sativa) has evolved complex genetic mechanisms to adjust to drought stress. However, few genetic variants have been identified that mediate drought resistance in upland rice, and little is known about the evolution of this trait during domestication. Here, using a genome-wide association study in rice, we identified ROOT LENGTH 1 (RoLe1) controlling root length and drought resistance. We demonstrate that a G-to-T polymorphism in the RoLe1 promoter increases binding of the transcription factor OsNAC41 to activate its transcription. We also show that RoLe1 interacts with and interferes with the function of OsAGAP, an ARF-GTPase activating protein involved in auxin-dependent root development, to modulate root development. Furthermore, RoLe1 enhanced crop yield by increasing the seed setting rate under moderate drought conditions. Genomic evolution analysis showed that a newly arisen favorable allelic variant, proRoLe1-526T, originated from Region I (Midwest Asia) and was retained in upland rice during domestication. Our findings propose a OsNAC41-RoLe1-OsAGAP module, providing promising genetic targets for molecular breeding of drought-resistant varieties in rice.

干旱是限制全球作物产量的主要环境胁迫。陆稻(Oryza sativa)已进化出复杂的遗传机制来适应干旱胁迫。然而,在陆地水稻中发现的介导抗旱性的遗传变异很少,人们对这一性状在驯化过程中的进化也知之甚少。在此,我们利用水稻的全基因组关联研究,确定了控制根长和抗旱性的根长 1(RoLe1)。我们证明,RoLe1 启动子中的 G 到 T 多态性增加了转录因子 OsNAC41 的结合,从而激活了其转录。我们还发现,RoLe1 与参与辅助素依赖性根系发育的 ARF-GTPase 激活蛋白 OsAGAP 相互作用并干扰其功能,从而调节根系发育。此外,在中度干旱条件下,RoLe1通过提高种子结实率提高了作物产量。基因组进化分析表明,一个新出现的有利等位基因变体 proRoLe1-526T 起源于 I 区(亚洲中西部),并在驯化过程中保留在高原水稻中。我们的研究结果提出了一个 OsNAC41-RoLe1-OsAGAP 模块,为水稻抗旱品种的分子育种提供了有前景的遗传目标。
{"title":"The OsNAC41-RoLe1-OsAGAP module promotes root development and drought tolerance in upland rice.","authors":"Shichen Han, Yulong Wang, Yingxiu Li, Rui Zhu, Yunsong Gu, Jin Li, Haifeng Guo, Wei Ye, Hafiz Ghualm Nabi, Tao Yang, Yanming Wang, Pengli Liu, Junzhi Duan, Xingming Sun, Zhanying Zhang, Hongliang Zhang, Zichao Li, Jinjie Li","doi":"10.1016/j.molp.2024.09.002","DOIUrl":"https://doi.org/10.1016/j.molp.2024.09.002","url":null,"abstract":"<p><p>Drought is a major environmental stress limiting crop yields worldwide. Upland rice (Oryza sativa) has evolved complex genetic mechanisms to adjust to drought stress. However, few genetic variants have been identified that mediate drought resistance in upland rice, and little is known about the evolution of this trait during domestication. Here, using a genome-wide association study in rice, we identified ROOT LENGTH 1 (RoLe1) controlling root length and drought resistance. We demonstrate that a G-to-T polymorphism in the RoLe1 promoter increases binding of the transcription factor OsNAC41 to activate its transcription. We also show that RoLe1 interacts with and interferes with the function of OsAGAP, an ARF-GTPase activating protein involved in auxin-dependent root development, to modulate root development. Furthermore, RoLe1 enhanced crop yield by increasing the seed setting rate under moderate drought conditions. Genomic evolution analysis showed that a newly arisen favorable allelic variant, proRoLe1<sup>-526T</sup>, originated from Region I (Midwest Asia) and was retained in upland rice during domestication. Our findings propose a OsNAC41-RoLe1-OsAGAP module, providing promising genetic targets for molecular breeding of drought-resistant varieties in rice.</p>","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":null,"pages":null},"PeriodicalIF":17.1,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142126226","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
AtWRKY1 at the intersection of plant development and defense: The cost of coping with adversity. AtWRKY1 位于植物发育与防御的交叉点:应对逆境的代价
IF 17.1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-09-02 DOI: 10.1016/j.molp.2024.08.012
Andreas M Fischer

The life cycle of many plants including our most important crops is short, with weeks to months between germination and death. Monocarpic plants flower only once, with seed/grain filling dependent on nutrient remobilization from senescing parental plants. A mature crop stand such as a harvest-ready wheat field is the result of mass suicide, with only the seeds/grains as living entities.

许多植物(包括我们最重要的农作物)的生命周期很短,从发芽到死亡只有几周到几个月的时间。单子叶植物只开一次花,种子/谷粒的灌浆依赖于衰老亲本植物的养分再动员。成熟的庄稼地(如可收割的麦田)是集体自杀的结果,只有种子/谷粒是有生命的实体。
{"title":"AtWRKY1 at the intersection of plant development and defense: The cost of coping with adversity.","authors":"Andreas M Fischer","doi":"10.1016/j.molp.2024.08.012","DOIUrl":"https://doi.org/10.1016/j.molp.2024.08.012","url":null,"abstract":"<p><p>The life cycle of many plants including our most important crops is short, with weeks to months between germination and death. Monocarpic plants flower only once, with seed/grain filling dependent on nutrient remobilization from senescing parental plants. A mature crop stand such as a harvest-ready wheat field is the result of mass suicide, with only the seeds/grains as living entities.</p>","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":null,"pages":null},"PeriodicalIF":17.1,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142120285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Molecular Plant
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1