Genome-scale and pathway engineering for the sustainable aviation fuel precursor isoprenol production in Pseudomonas putida

IF 6.8 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Metabolic engineering Pub Date : 2024-02-16 DOI:10.1016/j.ymben.2024.02.004
Deepanwita Banerjee , Ian S. Yunus , Xi Wang , Jinho Kim , Aparajitha Srinivasan , Russel Menchavez , Yan Chen , Jennifer W. Gin , Christopher J. Petzold , Hector Garcia Martin , Jon K. Magnuson , Paul D. Adams , Blake A. Simmons , Aindrila Mukhopadhyay , Joonhoon Kim , Taek Soon Lee
{"title":"Genome-scale and pathway engineering for the sustainable aviation fuel precursor isoprenol production in Pseudomonas putida","authors":"Deepanwita Banerjee ,&nbsp;Ian S. Yunus ,&nbsp;Xi Wang ,&nbsp;Jinho Kim ,&nbsp;Aparajitha Srinivasan ,&nbsp;Russel Menchavez ,&nbsp;Yan Chen ,&nbsp;Jennifer W. Gin ,&nbsp;Christopher J. Petzold ,&nbsp;Hector Garcia Martin ,&nbsp;Jon K. Magnuson ,&nbsp;Paul D. Adams ,&nbsp;Blake A. Simmons ,&nbsp;Aindrila Mukhopadhyay ,&nbsp;Joonhoon Kim ,&nbsp;Taek Soon Lee","doi":"10.1016/j.ymben.2024.02.004","DOIUrl":null,"url":null,"abstract":"<div><p>Sustainable aviation fuel (SAF) will significantly impact global warming in the aviation sector, and important SAF targets are emerging. Isoprenol is a precursor for a promising SAF compound DMCO (1,4-dimethylcyclooctane) and has been produced in several engineered microorganisms. Recently, <em>Pseudomonas putida</em> has gained interest as a future host for isoprenol bioproduction as it can utilize carbon sources from inexpensive plant biomass. Here, we engineer metabolically versatile host <em>P. putida</em> for isoprenol production. We employ two computational modeling approaches (Bilevel optimization and Constrained Minimal Cut Sets) to predict gene knockout targets and optimize the “IPP-bypass” pathway in <em>P. putida</em> to maximize isoprenol production. Altogether, the highest isoprenol production titer from <em>P. putida</em> was achieved at 3.5 g/L under fed-batch conditions. This combination of computational modeling and strain engineering on <em>P. putida</em> for an advanced biofuels production has vital significance in enabling a bioproduction process that can use renewable carbon streams.</p></div>","PeriodicalId":18483,"journal":{"name":"Metabolic engineering","volume":null,"pages":null},"PeriodicalIF":6.8000,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S109671762400020X/pdfft?md5=ccf3c9a3453e592888a4831af6d1fee9&pid=1-s2.0-S109671762400020X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolic engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S109671762400020X","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Sustainable aviation fuel (SAF) will significantly impact global warming in the aviation sector, and important SAF targets are emerging. Isoprenol is a precursor for a promising SAF compound DMCO (1,4-dimethylcyclooctane) and has been produced in several engineered microorganisms. Recently, Pseudomonas putida has gained interest as a future host for isoprenol bioproduction as it can utilize carbon sources from inexpensive plant biomass. Here, we engineer metabolically versatile host P. putida for isoprenol production. We employ two computational modeling approaches (Bilevel optimization and Constrained Minimal Cut Sets) to predict gene knockout targets and optimize the “IPP-bypass” pathway in P. putida to maximize isoprenol production. Altogether, the highest isoprenol production titer from P. putida was achieved at 3.5 g/L under fed-batch conditions. This combination of computational modeling and strain engineering on P. putida for an advanced biofuels production has vital significance in enabling a bioproduction process that can use renewable carbon streams.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用基因组规模和途径工程技术在假单胞菌(Pseudomonas putida)中生产可持续的航空燃料前体异丙醇。
可持续航空燃料(SAF)将对航空领域的全球变暖产生重大影响,而重要的可持续航空燃料目标正在出现。异戊二烯醇是一种前景广阔的可持续航空燃料化合物 DMCO(1,4-二甲基环辛烷)的前体,已在几种工程微生物中生产。最近,普氏假单胞菌(Pseudomonas putida)作为异丙醇生物生产的未来宿主引起了人们的兴趣,因为它可以利用廉价植物生物质中的碳源。在这里,我们对代谢多功能宿主 P. putida 进行了工程改造,以生产异丙肾上腺素。我们采用两种计算建模方法(双级优化和受限最小切割集)来预测基因敲除目标,并优化 P. putida 的 "IPP 旁路 "途径,以最大限度地提高异丙肾上腺素的产量。在喂养批次条件下,P. putida 生产异丙醇的最高滴度为 3.5 克/升。这种将计算建模和菌株工程学相结合的用于高级生物燃料生产的 P. putida 对实现可利用可再生碳流的生物生产过程具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Metabolic engineering
Metabolic engineering 工程技术-生物工程与应用微生物
CiteScore
15.60
自引率
6.00%
发文量
140
审稿时长
44 days
期刊介绍: Metabolic Engineering (MBE) is a journal that focuses on publishing original research papers on the directed modulation of metabolic pathways for metabolite overproduction or the enhancement of cellular properties. It welcomes papers that describe the engineering of native pathways and the synthesis of heterologous pathways to convert microorganisms into microbial cell factories. The journal covers experimental, computational, and modeling approaches for understanding metabolic pathways and manipulating them through genetic, media, or environmental means. Effective exploration of metabolic pathways necessitates the use of molecular biology and biochemistry methods, as well as engineering techniques for modeling and data analysis. MBE serves as a platform for interdisciplinary research in fields such as biochemistry, molecular biology, applied microbiology, cellular physiology, cellular nutrition in health and disease, and biochemical engineering. The journal publishes various types of papers, including original research papers and review papers. It is indexed and abstracted in databases such as Scopus, Embase, EMBiology, Current Contents - Life Sciences and Clinical Medicine, Science Citation Index, PubMed/Medline, CAS and Biotechnology Citation Index.
期刊最新文献
Heterologous biosynthesis of betanin triggers metabolic reprogramming in tobacco. Not all cytochrome b5s are created equal: How a specific CytB5 boosts forskolin biosynthesis in Saccharomyces cerevisiae Applying metabolic control strategies to engineered T cell cancer therapies Engineering Halomonas bluephagenesis for synthesis of polyhydroxybutyrate (PHB) in the presence of high nitrogen containing media Adaptive laboratory evolution and metabolic engineering of Cupriavidus necator for improved catabolism of volatile fatty acids
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1