Social construction of XAI: Do we need one definition to rule them all?

IF 6.7 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Patterns Pub Date : 2024-02-09 DOI:10.1016/j.patter.2024.100926
Upol Ehsan, Mark O Riedl
{"title":"Social construction of XAI: Do we need one definition to rule them all?","authors":"Upol Ehsan, Mark O Riedl","doi":"10.1016/j.patter.2024.100926","DOIUrl":null,"url":null,"abstract":"<p><p>In this opinion, Upol Ehsan and Mark Riedl argue why a singular monolithic definition of explainable AI (XAI) is neither feasible nor desirable at this stage of XAI's development.</p>","PeriodicalId":36242,"journal":{"name":"Patterns","volume":null,"pages":null},"PeriodicalIF":6.7000,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10873153/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Patterns","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.patter.2024.100926","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

In this opinion, Upol Ehsan and Mark Riedl argue why a singular monolithic definition of explainable AI (XAI) is neither feasible nor desirable at this stage of XAI's development.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
XAI 的社会建构:我们是否需要一个定义来统领一切?
在这篇观点中,Upol Ehsan 和 Mark Riedl 论证了为什么在 XAI 发展的现阶段,对可解释人工智能(XAI)进行单一的定义既不可行,也不可取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Patterns
Patterns Decision Sciences-Decision Sciences (all)
CiteScore
10.60
自引率
4.60%
发文量
153
审稿时长
19 weeks
期刊介绍:
期刊最新文献
AnnoMate: Exploring and annotating integrated molecular data through custom interactive visualizations Balancing innovation and integrity in peer review The stacking cell puzzle To democratize research with sensitive data, we should make synthetic data more accessible FAIM: Fairness-aware interpretable modeling for trustworthy machine learning in healthcare
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1