首页 > 最新文献

Patterns最新文献

英文 中文
AnnoMate: Exploring and annotating integrated molecular data through custom interactive visualizations AnnoMate:通过定制的交互式可视化方式探索和注释集成的分子数据
IF 6.5 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-09-16 DOI: 10.1016/j.patter.2024.101060
Claudia Chu, Conor Messer, Samantha Van Seters, Mendy Miller, Kristy Schlueter-Kuck, Gad Getz

Manual review is an integral part of any study. As the cost of data generation continues to decrease, the rapid rise in large-scale multi-omic studies calls for a modular, flexible framework to perform what is currently a tedious, error-prone process. We developed AnnoMate, a Python-based package built with Plotly Dash that creates interactive, highly customizable dashboards for reviewing and annotating data. Its object-oriented framework enables easy development and modification of custom dashboards for specific manual review tasks. We utilized this framework to implement “reviewer” dashboards for various tasks often performed in cancer genome sequencing studies.

人工审核是任何研究不可或缺的一部分。随着数据生成成本的不断降低,大规模多组学研究的迅速增加需要一个模块化、灵活的框架来完成目前繁琐、容易出错的过程。我们开发了 AnnoMate,这是一个基于 Python 的软件包,使用 Plotly Dash 创建交互式、高度可定制的仪表板,用于审查和注释数据。其面向对象的框架可轻松开发和修改用于特定人工审核任务的自定义仪表盘。我们利用这个框架为癌症基因组测序研究中经常执行的各种任务实现了 "审阅者 "仪表盘。
{"title":"AnnoMate: Exploring and annotating integrated molecular data through custom interactive visualizations","authors":"Claudia Chu, Conor Messer, Samantha Van Seters, Mendy Miller, Kristy Schlueter-Kuck, Gad Getz","doi":"10.1016/j.patter.2024.101060","DOIUrl":"https://doi.org/10.1016/j.patter.2024.101060","url":null,"abstract":"<p>Manual review is an integral part of any study. As the cost of data generation continues to decrease, the rapid rise in large-scale multi-omic studies calls for a modular, flexible framework to perform what is currently a tedious, error-prone process. We developed <em>AnnoMate</em>, a Python-based package built with Plotly Dash that creates interactive, highly customizable dashboards for reviewing and annotating data. Its object-oriented framework enables easy development and modification of custom dashboards for specific manual review tasks. We utilized this framework to implement “reviewer” dashboards for various tasks often performed in cancer genome sequencing studies.</p>","PeriodicalId":36242,"journal":{"name":"Patterns","volume":null,"pages":null},"PeriodicalIF":6.5,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142250275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
To democratize research with sensitive data, we should make synthetic data more accessible 为实现敏感数据研究的民主化,我们应该让合成数据更容易获取
IF 6.5 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-09-13 DOI: 10.1016/j.patter.2024.101049
Erik-Jan van Kesteren

For over 30 years, synthetic data have been heralded as a solution to make sensitive datasets accessible. However, despite much research effort, its adoption as a tool for research with sensitive data is lacking. This article argues that to make progress in this regard, the data science community should focus on improving the accessibility of existing privacy-friendly synthesis techniques.

30 多年来,合成数据一直被视为使敏感数据集可访问的解决方案。然而,尽管开展了大量研究工作,但合成数据作为敏感数据研究工具的应用还很欠缺。本文认为,要在这方面取得进展,数据科学界应集中精力提高现有隐私友好合成技术的可访问性。
{"title":"To democratize research with sensitive data, we should make synthetic data more accessible","authors":"Erik-Jan van Kesteren","doi":"10.1016/j.patter.2024.101049","DOIUrl":"https://doi.org/10.1016/j.patter.2024.101049","url":null,"abstract":"<p>For over 30 years, synthetic data have been heralded as a solution to make sensitive datasets accessible. However, despite much research effort, its adoption as a tool for research with sensitive data is lacking. This article argues that to make progress in this regard, the data science community should focus on improving the accessibility of existing privacy-friendly synthesis techniques.</p>","PeriodicalId":36242,"journal":{"name":"Patterns","volume":null,"pages":null},"PeriodicalIF":6.5,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142196804","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Balancing innovation and integrity in peer review 在同行评审中平衡创新与诚信
IF 6.5 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-09-13 DOI: 10.1016/j.patter.2024.101061
Andrew L. Hufton
No Abstract
无摘要
{"title":"Balancing innovation and integrity in peer review","authors":"Andrew L. Hufton","doi":"10.1016/j.patter.2024.101061","DOIUrl":"https://doi.org/10.1016/j.patter.2024.101061","url":null,"abstract":"No Abstract","PeriodicalId":36242,"journal":{"name":"Patterns","volume":null,"pages":null},"PeriodicalIF":6.5,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142196802","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The stacking cell puzzle 堆叠电池之谜
IF 6.5 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-09-13 DOI: 10.1016/j.patter.2024.101040
Mol Mir, Stephanie H. Nowotarski

The “stacking cell puzzle” is a data visualization project consisting of a three-dimensional puzzle made with electron microscopy data of planarian cells.

堆叠细胞拼图 "是一个数据可视化项目,包括一个利用扁平动物细胞电子显微镜数据制作的三维拼图。
{"title":"The stacking cell puzzle","authors":"Mol Mir, Stephanie H. Nowotarski","doi":"10.1016/j.patter.2024.101040","DOIUrl":"https://doi.org/10.1016/j.patter.2024.101040","url":null,"abstract":"<p>The “stacking cell puzzle” is a data visualization project consisting of a three-dimensional puzzle made with electron microscopy data of planarian cells.</p>","PeriodicalId":36242,"journal":{"name":"Patterns","volume":null,"pages":null},"PeriodicalIF":6.5,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142196803","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
FAIM: Fairness-aware interpretable modeling for trustworthy machine learning in healthcare FAIM:面向医疗保健领域可信机器学习的公平感知可解释建模
IF 6.5 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-09-12 DOI: 10.1016/j.patter.2024.101059
Mingxuan Liu, Yilin Ning, Yuhe Ke, Yuqing Shang, Bibhas Chakraborty, Marcus Eng Hock Ong, Roger Vaughan, Nan Liu

The escalating integration of machine learning in high-stakes fields such as healthcare raises substantial concerns about model fairness. We propose an interpretable framework, fairness-aware interpretable modeling (FAIM), to improve model fairness without compromising performance, featuring an interactive interface to identify a “fairer” model from a set of high-performing models and promoting the integration of data-driven evidence and clinical expertise to enhance contextualized fairness. We demonstrate FAIM’s value in reducing intersectional biases arising from race and sex by predicting hospital admission with two real-world databases, the Medical Information Mart for Intensive Care IV Emergency Department (MIMIC-IV-ED) and the database collected from Singapore General Hospital Emergency Department (SGH-ED). For both datasets, FAIM models not only exhibit satisfactory discriminatory performance but also significantly mitigate biases as measured by well-established fairness metrics, outperforming commonly used bias mitigation methods. Our approach demonstrates the feasibility of improving fairness without sacrificing performance and provides a modeling mode that invites domain experts to engage, fostering a multidisciplinary effort toward tailored AI fairness.

机器学习与医疗保健等高风险领域的整合不断升级,引起了人们对模型公平性的极大关注。我们提出了一个可解释的框架--公平感知可解释建模(FAIM),以在不影响性能的情况下提高模型的公平性,其特点是从一组高性能模型中识别出 "更公平 "模型的交互式界面,并促进数据驱动的证据和临床专业知识的整合,以提高情境公平性。我们利用两个真实世界的数据库--重症监护医学信息市场 IV 急诊部(MIMIC-IV-ED)和新加坡中央医院急诊部(SGH-ED)收集的数据库--预测入院情况,证明了 FAIM 在减少种族和性别交叉偏见方面的价值。对于这两个数据集,FAIM 模型不仅表现出令人满意的判别性能,而且还能显著减轻偏差,这是用公认的公平性指标来衡量的,优于常用的减轻偏差方法。我们的方法证明了在不牺牲性能的情况下提高公平性的可行性,并提供了一种可邀请领域专家参与的建模模式,促进了多学科合作,以实现量身定制的人工智能公平性。
{"title":"FAIM: Fairness-aware interpretable modeling for trustworthy machine learning in healthcare","authors":"Mingxuan Liu, Yilin Ning, Yuhe Ke, Yuqing Shang, Bibhas Chakraborty, Marcus Eng Hock Ong, Roger Vaughan, Nan Liu","doi":"10.1016/j.patter.2024.101059","DOIUrl":"https://doi.org/10.1016/j.patter.2024.101059","url":null,"abstract":"<p>The escalating integration of machine learning in high-stakes fields such as healthcare raises substantial concerns about model fairness. We propose an interpretable framework, fairness-aware interpretable modeling (FAIM), to improve model fairness without compromising performance, featuring an interactive interface to identify a “fairer” model from a set of high-performing models and promoting the integration of data-driven evidence and clinical expertise to enhance contextualized fairness. We demonstrate FAIM’s value in reducing intersectional biases arising from race and sex by predicting hospital admission with two real-world databases, the Medical Information Mart for Intensive Care IV Emergency Department (MIMIC-IV-ED) and the database collected from Singapore General Hospital Emergency Department (SGH-ED). For both datasets, FAIM models not only exhibit satisfactory discriminatory performance but also significantly mitigate biases as measured by well-established fairness metrics, outperforming commonly used bias mitigation methods. Our approach demonstrates the feasibility of improving fairness without sacrificing performance and provides a modeling mode that invites domain experts to engage, fostering a multidisciplinary effort toward tailored AI fairness.</p>","PeriodicalId":36242,"journal":{"name":"Patterns","volume":null,"pages":null},"PeriodicalIF":6.5,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142196805","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Segmentation tracking and clustering system enables accurate multi-animal tracking of social behaviors 分段跟踪和聚类系统可对多只动物的社会行为进行精确跟踪
IF 6.5 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-09-10 DOI: 10.1016/j.patter.2024.101057
Cheng Tang, Yang Zhou, Shuaizhu Zhao, Mingshu Xie, Ruizhe Zhang, Xiaoyan Long, Lingqiang Zhu, Youming Lu, Guangzhi Ma, Hao Li

Accurate analysis of social behaviors in animals is hindered by methodological challenges. Here, we develop a segmentation tracking and clustering system (STCS) to address two major challenges in computational neuroethology: reliable multi-animal tracking and pose estimation under complex interaction conditions and providing interpretable insights into social differences guided by genotype information. We established a comprehensive, long-term, multi-animal-tracking dataset across various experimental settings. Benchmarking STCS against state-of-the-art tracking algorithms, we demonstrated its superior efficacy in analyzing behavioral experiments and establishing a robust tracking baseline. By analyzing the behavior of mice with autism spectrum disorder (ASD) using a novel weakly supervised clustering method under both solitary and social conditions, STCS reveals potential links between social stress and motor impairments. Benefiting from its modular and web-based design, STCS allows researchers to easily integrate the latest computer vision methods, enabling comprehensive behavior analysis services over the Internet, even from a single laptop.

对动物社会行为的精确分析受到方法学挑战的阻碍。在这里,我们开发了一个分段跟踪和聚类系统(STCS),以解决计算神经伦理学中的两大难题:在复杂的交互条件下进行可靠的多动物跟踪和姿势估计,以及在基因型信息的指导下对社会差异提供可解释的见解。我们建立了一个跨越各种实验环境的全面、长期、多动物追踪数据集。通过将 STCS 与最先进的跟踪算法进行对比,我们证明了它在分析行为实验和建立稳健跟踪基线方面的卓越功效。通过使用一种新型弱监督聚类方法分析患有自闭症谱系障碍(ASD)的小鼠在独居和社交条件下的行为,STCS揭示了社交压力与运动障碍之间的潜在联系。得益于模块化和基于网络的设计,STCS 允许研究人员轻松集成最新的计算机视觉方法,通过互联网提供全面的行为分析服务,甚至只需一台笔记本电脑即可实现。
{"title":"Segmentation tracking and clustering system enables accurate multi-animal tracking of social behaviors","authors":"Cheng Tang, Yang Zhou, Shuaizhu Zhao, Mingshu Xie, Ruizhe Zhang, Xiaoyan Long, Lingqiang Zhu, Youming Lu, Guangzhi Ma, Hao Li","doi":"10.1016/j.patter.2024.101057","DOIUrl":"https://doi.org/10.1016/j.patter.2024.101057","url":null,"abstract":"<p>Accurate analysis of social behaviors in animals is hindered by methodological challenges. Here, we develop a segmentation tracking and clustering system (STCS) to address two major challenges in computational neuroethology: reliable multi-animal tracking and pose estimation under complex interaction conditions and providing interpretable insights into social differences guided by genotype information. We established a comprehensive, long-term, multi-animal-tracking dataset across various experimental settings. Benchmarking STCS against state-of-the-art tracking algorithms, we demonstrated its superior efficacy in analyzing behavioral experiments and establishing a robust tracking baseline. By analyzing the behavior of mice with autism spectrum disorder (ASD) using a novel weakly supervised clustering method under both solitary and social conditions, STCS reveals potential links between social stress and motor impairments. Benefiting from its modular and web-based design, STCS allows researchers to easily integrate the latest computer vision methods, enabling comprehensive behavior analysis services over the Internet, even from a single laptop.</p>","PeriodicalId":36242,"journal":{"name":"Patterns","volume":null,"pages":null},"PeriodicalIF":6.5,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142196811","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Calibrating workers’ trust in intelligent automated systems 校准工人对智能自动化系统的信任度
IF 6.5 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-08-29 DOI: 10.1016/j.patter.2024.101045
Gale M. Lucas, Burcin Becerik-Gerber, Shawn C. Roll

With the exponential rise in the prevalence of automation, trust in such technology has become more critical than ever before. Trust is confidence in a particular entity, especially in regard to the consequences they can have for the trustor, and calibrated trust is the extent to which the judgments of trust are accurate. The focus of this paper is to reevaluate the general understanding of calibrating trust in automation, update this understanding, and apply it to worker’s trust in automation in the workplace. Seminal models of trust in automation were designed for automation that was already common in workforces, where the machine’s “intelligence” (i.e., capacity for decision making, cognition, and/or understanding) was limited. Now, burgeoning automation with more human-like intelligence is intended to be more interactive with workers, serving in roles such as decision aid, assistant, or collaborative coworker. Thus, we revise “calibrated trust in automation” to include more intelligent automated systems.

随着自动化技术的普及,信任变得比以往任何时候都更加重要。信任是对特定实体的信心,尤其是在它们可能对信任者产生的后果方面,而校准信任则是信任判断的准确程度。本文的重点是重新评估对自动化信任校准的一般理解,更新这一理解,并将其应用于工作场所中工人对自动化的信任。关于自动化信任度的经典模型是针对工作场所中已经很常见的自动化而设计的,在这种情况下,机器的 "智能"(即决策、认知和/或理解能力)是有限的。而现在,正在蓬勃发展的自动化技术拥有更多类似人类的智能,可以与工人进行更多互动,扮演决策辅助、助手或协作同事等角色。因此,我们修改了 "对自动化的校准信任",以纳入更智能的自动化系统。
{"title":"Calibrating workers’ trust in intelligent automated systems","authors":"Gale M. Lucas, Burcin Becerik-Gerber, Shawn C. Roll","doi":"10.1016/j.patter.2024.101045","DOIUrl":"https://doi.org/10.1016/j.patter.2024.101045","url":null,"abstract":"<p>With the exponential rise in the prevalence of automation, trust in such technology has become more critical than ever before. Trust is confidence in a particular entity, especially in regard to the consequences they can have for the trustor, and calibrated trust is the extent to which the judgments of trust are accurate. The focus of this paper is to reevaluate the general understanding of calibrating trust in automation, update this understanding, and apply it to worker’s trust in automation in the workplace. Seminal models of trust in automation were designed for automation that was already common in workforces, where the machine’s “intelligence” (i.e., capacity for decision making, cognition, and/or understanding) was limited. Now, burgeoning automation with more human-like intelligence is intended to be more interactive with workers, serving in roles such as decision aid, assistant, or collaborative coworker. Thus, we revise “calibrated trust in automation” to include more intelligent automated systems.</p>","PeriodicalId":36242,"journal":{"name":"Patterns","volume":null,"pages":null},"PeriodicalIF":6.5,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142196807","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Generating realistic neurophysiological time series with denoising diffusion probabilistic models 利用去噪扩散概率模型生成逼真的神经生理时间序列
IF 6.5 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-08-29 DOI: 10.1016/j.patter.2024.101047
Julius Vetter, Jakob H. Macke, Richard Gao

Denoising diffusion probabilistic models (DDPMs) have recently been shown to accurately generate complicated data such as images, audio, or time series. Experimental and clinical neuroscience also stand to benefit from this progress, as the accurate generation of neurophysiological time series can enable or improve many neuroscientific applications. Here, we present a flexible DDPM-based method for modeling multichannel, densely sampled neurophysiological recordings. DDPMs can generate realistic synthetic data for a variety of datasets from different species and recording techniques. The generated data capture important statistics, such as frequency spectra and phase-amplitude coupling, as well as fine-grained features such as sharp wave ripples. Furthermore, data can be generated based on additional information such as experimental conditions. We demonstrate the flexibility of DDPMs in several applications, including brain-state classification and missing-data imputation. In summary, DDPMs can serve as accurate generative models of neurophysiological recordings and have broad utility in the probabilistic generation of synthetic recordings for neuroscientific applications.

最近的研究表明,去噪扩散概率模型(DDPM)可以准确生成复杂的数据,如图像、音频或时间序列。实验和临床神经科学也将从这一进展中受益,因为准确生成神经生理学时间序列可以促进或改善许多神经科学应用。在此,我们介绍一种基于 DDPM 的灵活方法,用于对多通道、密集采样的神经生理学记录建模。DDPM 可以为来自不同物种和记录技术的各种数据集生成逼真的合成数据。生成的数据能捕捉到重要的统计数据,如频率谱和相位-振幅耦合,以及细粒度特征,如尖锐的波纹。此外,还可以根据实验条件等附加信息生成数据。我们在多个应用中展示了 DDPMs 的灵活性,包括脑状态分类和缺失数据估算。总之,DDPMs 可以作为神经生理学记录的精确生成模型,在神经科学应用的合成记录概率生成中具有广泛的实用性。
{"title":"Generating realistic neurophysiological time series with denoising diffusion probabilistic models","authors":"Julius Vetter, Jakob H. Macke, Richard Gao","doi":"10.1016/j.patter.2024.101047","DOIUrl":"https://doi.org/10.1016/j.patter.2024.101047","url":null,"abstract":"<p>Denoising diffusion probabilistic models (DDPMs) have recently been shown to accurately generate complicated data such as images, audio, or time series. Experimental and clinical neuroscience also stand to benefit from this progress, as the accurate generation of neurophysiological time series can enable or improve many neuroscientific applications. Here, we present a flexible DDPM-based method for modeling multichannel, densely sampled neurophysiological recordings. DDPMs can generate realistic synthetic data for a variety of datasets from different species and recording techniques. The generated data capture important statistics, such as frequency spectra and phase-amplitude coupling, as well as fine-grained features such as sharp wave ripples. Furthermore, data can be generated based on additional information such as experimental conditions. We demonstrate the flexibility of DDPMs in several applications, including brain-state classification and missing-data imputation. In summary, DDPMs can serve as accurate generative models of neurophysiological recordings and have broad utility in the probabilistic generation of synthetic recordings for neuroscientific applications.</p>","PeriodicalId":36242,"journal":{"name":"Patterns","volume":null,"pages":null},"PeriodicalIF":6.5,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142196808","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transcriptomic mapping of the 5-HT receptor landscape 5-HT 受体的转录组图谱
IF 6.5 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-08-29 DOI: 10.1016/j.patter.2024.101048
Roberto De Filippo, Dietmar Schmitz

Serotonin (5-HT) is crucial for regulating brain functions such as mood, sleep, and cognition. This study presents a comprehensive transcriptomic analysis of 5-HT receptors (Htrs) across ≈4 million cells in the adult mouse brain using single-cell RNA sequencing (scRNA-seq) data from the Allen Institute. We observed differential transcription patterns of all 14 Htr subtypes, revealing diverse prevalence and distribution across cell classes. Remarkably, we found that 65.84% of cells transcribe RNA of at least one Htr, with frequent co-transcription of multiple Htrs, underscoring the complexity of the 5-HT system even at the single-cell dimension. Leveraging a multiplexed error-robust fluorescence in situ hybridization (MERFISH) dataset provided by Harvard University of ≈10 million cells, we analyzed the spatial distribution of each Htr, confirming previous findings and uncovering novel transcription patterns. To aid in exploring Htr transcription, we provide an online interactive visualizer.

羟色胺(5-HT)对调节情绪、睡眠和认知等大脑功能至关重要。本研究利用艾伦研究所的单细胞RNA测序(scRNA-seq)数据,对成年小鼠大脑中≈400万个细胞中的5-HT受体(Htrs)进行了全面的转录组分析。我们观察到了所有 14 种 Htr 亚型的不同转录模式,揭示了它们在不同细胞类别中的流行和分布情况。值得注意的是,我们发现 65.84% 的细胞至少转录了一种 Htr 的 RNA,而且经常出现多种 Htr 共同转录的情况,这凸显了 5-HT 系统的复杂性,即使在单细胞维度上也是如此。我们利用哈佛大学提供的≈1000 万个细胞的多重误差抑制荧光原位杂交(MERFISH)数据集,分析了每个 Htr 的空间分布,证实了以前的发现,并发现了新的转录模式。为了帮助探索 Htr 转录,我们提供了一个在线互动可视化工具。
{"title":"Transcriptomic mapping of the 5-HT receptor landscape","authors":"Roberto De Filippo, Dietmar Schmitz","doi":"10.1016/j.patter.2024.101048","DOIUrl":"https://doi.org/10.1016/j.patter.2024.101048","url":null,"abstract":"<p>Serotonin (5-HT) is crucial for regulating brain functions such as mood, sleep, and cognition. This study presents a comprehensive transcriptomic analysis of 5-HT receptors (Htrs) across ≈4 million cells in the adult mouse brain using single-cell RNA sequencing (scRNA-seq) data from the Allen Institute. We observed differential transcription patterns of all 14 Htr subtypes, revealing diverse prevalence and distribution across cell classes. Remarkably, we found that 65.84% of cells transcribe RNA of at least one Htr, with frequent co-transcription of multiple Htrs, underscoring the complexity of the 5-HT system even at the single-cell dimension. Leveraging a multiplexed error-robust fluorescence <em>in situ</em> hybridization (MERFISH) dataset provided by Harvard University of ≈10 million cells, we analyzed the spatial distribution of each Htr, confirming previous findings and uncovering novel transcription patterns. To aid in exploring Htr transcription, we provide an online interactive visualizer.</p>","PeriodicalId":36242,"journal":{"name":"Patterns","volume":null,"pages":null},"PeriodicalIF":6.5,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142196806","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Avoiding common machine learning pitfalls 避免常见的机器学习陷阱
IF 6.5 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-08-28 DOI: 10.1016/j.patter.2024.101046
Michael A. Lones

Mistakes in machine learning practice are commonplace and can result in loss of confidence in the findings and products of machine learning. This tutorial outlines common mistakes that occur when using machine learning and what can be done to avoid them. While it should be accessible to anyone with a basic understanding of machine learning techniques, it focuses on issues that are of particular concern within academic research, such as the need to make rigorous comparisons and reach valid conclusions. It covers five stages of the machine learning process: what to do before model building, how to reliably build models, how to robustly evaluate models, how to compare models fairly, and how to report results.

机器学习实践中的错误屡见不鲜,可能导致人们对机器学习的发现和产品失去信心。本教程概述了使用机器学习时常见的错误,以及如何避免这些错误。虽然任何对机器学习技术有基本了解的人都可以阅读,但它侧重于学术研究中特别关注的问题,例如进行严格比较和得出有效结论的必要性。本书涵盖了机器学习过程的五个阶段:建立模型前的准备工作、如何可靠地建立模型、如何稳健地评估模型、如何公平地比较模型以及如何报告结果。
{"title":"Avoiding common machine learning pitfalls","authors":"Michael A. Lones","doi":"10.1016/j.patter.2024.101046","DOIUrl":"https://doi.org/10.1016/j.patter.2024.101046","url":null,"abstract":"<p>Mistakes in machine learning practice are commonplace and can result in loss of confidence in the findings and products of machine learning. This tutorial outlines common mistakes that occur when using machine learning and what can be done to avoid them. While it should be accessible to anyone with a basic understanding of machine learning techniques, it focuses on issues that are of particular concern within academic research, such as the need to make rigorous comparisons and reach valid conclusions. It covers five stages of the machine learning process: what to do before model building, how to reliably build models, how to robustly evaluate models, how to compare models fairly, and how to report results.</p>","PeriodicalId":36242,"journal":{"name":"Patterns","volume":null,"pages":null},"PeriodicalIF":6.5,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142196809","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Patterns
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1