Identification of sliding plate bridge bearing malfunction and its effects on bridge structure under service conditions

IF 3.6 2区 工程技术 Q1 ENGINEERING, CIVIL Journal of Civil Structural Health Monitoring Pub Date : 2024-02-19 DOI:10.1007/s13349-024-00764-2
Hafiz Ahmed Waqas, Di Su, Tomonori Nagayama
{"title":"Identification of sliding plate bridge bearing malfunction and its effects on bridge structure under service conditions","authors":"Hafiz Ahmed Waqas, Di Su, Tomonori Nagayama","doi":"10.1007/s13349-024-00764-2","DOIUrl":null,"url":null,"abstract":"<p>A large inventory of steel bearings has malfunctioned due to corrosion and aging. Visual inspections are often insufficient to investigate the problem that could potentially influence the structural performance of bridges. A response-based method of detection of sliding plate bearing malfunction is proposed in this research. The proposed approach is used over a real bridge to assess its bearing performance under service conditions. A detailed Finite Element (FE) model of the bridge and bearings is prepared to simulate the stick–slip behavior of bearing and evaluate the influence of degrading bearing performance on the bridge structure. The developed FE model was validated by comparison of numerical and measured responses. The analysis results identified the distribution of stress concentrations around the bearing region and identified the crucial location of the fatigue problem. It is revealed that the critical stress concentration could appear even in case of one bearing malfunction and the degrading bearing performance should be timely identified to prevent serious fatigue related issues.</p>","PeriodicalId":48582,"journal":{"name":"Journal of Civil Structural Health Monitoring","volume":"16 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Civil Structural Health Monitoring","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13349-024-00764-2","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

A large inventory of steel bearings has malfunctioned due to corrosion and aging. Visual inspections are often insufficient to investigate the problem that could potentially influence the structural performance of bridges. A response-based method of detection of sliding plate bearing malfunction is proposed in this research. The proposed approach is used over a real bridge to assess its bearing performance under service conditions. A detailed Finite Element (FE) model of the bridge and bearings is prepared to simulate the stick–slip behavior of bearing and evaluate the influence of degrading bearing performance on the bridge structure. The developed FE model was validated by comparison of numerical and measured responses. The analysis results identified the distribution of stress concentrations around the bearing region and identified the crucial location of the fatigue problem. It is revealed that the critical stress concentration could appear even in case of one bearing malfunction and the degrading bearing performance should be timely identified to prevent serious fatigue related issues.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
滑动板桥梁支座故障及其在使用条件下对桥梁结构影响的识别
由于腐蚀和老化,大量钢支座出现故障。目视检查往往不足以调查可能影响桥梁结构性能的问题。本研究提出了一种基于响应的滑动板支座故障检测方法。所提出的方法被用于一座实际桥梁,以评估其在使用条件下的支座性能。为模拟支座的粘滑行为和评估支座性能下降对桥梁结构的影响,准备了详细的桥梁和支座有限元(FE)模型。通过比较数值响应和测量响应,对所开发的 FE 模型进行了验证。分析结果确定了支座区域周围的应力集中分布,并确定了疲劳问题的关键位置。分析结果表明,即使一个轴承出现故障,也可能出现临界应力集中,因此应及时发现轴承性能下降的情况,以防止出现严重的疲劳相关问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Civil Structural Health Monitoring
Journal of Civil Structural Health Monitoring Engineering-Safety, Risk, Reliability and Quality
CiteScore
8.10
自引率
11.40%
发文量
105
期刊介绍: The Journal of Civil Structural Health Monitoring (JCSHM) publishes articles to advance the understanding and the application of health monitoring methods for the condition assessment and management of civil infrastructure systems. JCSHM serves as a focal point for sharing knowledge and experience in technologies impacting the discipline of Civionics and Civil Structural Health Monitoring, especially in terms of load capacity ratings and service life estimation.
期刊最新文献
Development and implementation of medium-fidelity physics-based model for hybrid digital twin-based damage identification of piping structures Innovated bridge health diagnosis model using bridge critical frequency ratio R–C–C fusion classifier for automatic damage detection of heritage building using 3D laser scanning An AIoT system for real-time monitoring and forecasting of railway temperature Environmental effects on the experimental modal parameters of masonry buildings: experiences from the Italian Seismic Observatory of Structures (OSS) network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1