Design and Implementation of Comprehensive Thermal Management Verification Model for Electric Vehicles Operating in Cold Climates

IF 1.5 4区 工程技术 Q3 ENGINEERING, MECHANICAL International Journal of Automotive Technology Pub Date : 2024-02-18 DOI:10.1007/s12239-024-00009-7
Sanghyeon Nam, Chulwoo Moon, Suyong Park, Byeongtae Lee, Kyoungseok Han
{"title":"Design and Implementation of Comprehensive Thermal Management Verification Model for Electric Vehicles Operating in Cold Climates","authors":"Sanghyeon Nam, Chulwoo Moon, Suyong Park, Byeongtae Lee, Kyoungseok Han","doi":"10.1007/s12239-024-00009-7","DOIUrl":null,"url":null,"abstract":"<p>The electrification of vehicles has become a major focus in the automotive industry due to worldwide efforts toward reducing carbon emissions and achieving sustainable mobility. However, a significant challenge in expanding electrified vehicle market is to address the issue of limited driving range, particularly in cold climates. Thus, a precise and reasonable model that integrates both the heating, ventilation, and air conditioning system and the battery thermal management system is necessary to systematically analyze the system performance at early development stage. Motivated by this, we developed an electric vehicle simulator that includes an integrated thermal management system and validated it by comparing with the real experimental data, and we have demonstrated the reliability of the developed model. Using the model, we could apply various control methods, e.g., PID, model predictive control, for tracking the reference cabin temperature under various driving environments. Our findings indicate that the simplified control-oriented model can be a reliable tool for various vehicle thermal control designs. We believe that this study can provide valuable insights into the design and optimization of the thermal management system of electrified vehicles.</p>","PeriodicalId":50338,"journal":{"name":"International Journal of Automotive Technology","volume":"235 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Automotive Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12239-024-00009-7","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The electrification of vehicles has become a major focus in the automotive industry due to worldwide efforts toward reducing carbon emissions and achieving sustainable mobility. However, a significant challenge in expanding electrified vehicle market is to address the issue of limited driving range, particularly in cold climates. Thus, a precise and reasonable model that integrates both the heating, ventilation, and air conditioning system and the battery thermal management system is necessary to systematically analyze the system performance at early development stage. Motivated by this, we developed an electric vehicle simulator that includes an integrated thermal management system and validated it by comparing with the real experimental data, and we have demonstrated the reliability of the developed model. Using the model, we could apply various control methods, e.g., PID, model predictive control, for tracking the reference cabin temperature under various driving environments. Our findings indicate that the simplified control-oriented model can be a reliable tool for various vehicle thermal control designs. We believe that this study can provide valuable insights into the design and optimization of the thermal management system of electrified vehicles.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
为寒冷气候下运行的电动汽车设计和实施综合热管理验证模型
由于全球都在努力减少碳排放和实现可持续机动性,汽车电气化已成为汽车行业的一大焦点。然而,扩大电气化汽车市场的一个重大挑战是如何解决行驶里程有限的问题,尤其是在寒冷的气候条件下。因此,有必要建立一个精确合理的模型,将加热、通风和空调系统与电池热管理系统整合在一起,以便在早期开发阶段对系统性能进行系统分析。受此启发,我们开发了一个包含集成热管理系统的电动汽车模拟器,并通过与实际实验数据的对比进行了验证,证明了所开发模型的可靠性。利用该模型,我们可以应用各种控制方法,如 PID、模型预测控制等,在各种驾驶环境下跟踪参考座舱温度。我们的研究结果表明,面向控制的简化模型可以成为各种车辆热控制设计的可靠工具。我们相信,这项研究能为电动汽车热管理系统的设计和优化提供有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Automotive Technology
International Journal of Automotive Technology 工程技术-工程:机械
CiteScore
3.10
自引率
12.50%
发文量
129
审稿时长
6 months
期刊介绍: The International Journal of Automotive Technology has as its objective the publication and dissemination of original research in all fields of AUTOMOTIVE TECHNOLOGY, SCIENCE and ENGINEERING. It fosters thus the exchange of ideas among researchers in different parts of the world and also among researchers who emphasize different aspects of the foundations and applications of the field. Standing as it does at the cross-roads of Physics, Chemistry, Mechanics, Engineering Design and Materials Sciences, AUTOMOTIVE TECHNOLOGY is experiencing considerable growth as a result of recent technological advances. The Journal, by providing an international medium of communication, is encouraging this growth and is encompassing all aspects of the field from thermal engineering, flow analysis, structural analysis, modal analysis, control, vehicular electronics, mechatronis, electro-mechanical engineering, optimum design methods, ITS, and recycling. Interest extends from the basic science to technology applications with analytical, experimental and numerical studies. The emphasis is placed on contributions that appear to be of permanent interest to research workers and engineers in the field. If furthering knowledge in the area of principal concern of the Journal, papers of primary interest to the innovative disciplines of AUTOMOTIVE TECHNOLOGY, SCIENCE and ENGINEERING may be published. Papers that are merely illustrations of established principles and procedures, even though possibly containing new numerical or experimental data, will generally not be published. When outstanding advances are made in existing areas or when new areas have been developed to a definitive stage, special review articles will be considered by the editors. No length limitations for contributions are set, but only concisely written papers are published. Brief articles are considered on the basis of technical merit.
期刊最新文献
Testbed and Analysis of Highway Cut-In Scenarios for Evaluating the AEB and FCW Functions Prediction Models of Overall Thermal Sensation and Comfort in Vehicle Cabin Based on Field Experiments Efficient Path Planning for Automated Valet Parking: Integrating Hybrid A* Search with Geometric Curves Road Feel Simulation Method with Rack Force Observer for Intelligent Vehicle Steer-by-Wire System Multi-physical Field Coupling Analysis of Flat Wire Motor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1