Myungyeun Park, Daehwan Kim, YunSik Shin, Jayil Jeong
{"title":"Testbed and Analysis of Highway Cut-In Scenarios for Evaluating the AEB and FCW Functions","authors":"Myungyeun Park, Daehwan Kim, YunSik Shin, Jayil Jeong","doi":"10.1007/s12239-024-00146-z","DOIUrl":null,"url":null,"abstract":"<p>This study aims to provide a detailed evaluation and comparison of the performance of forward collision warning (FCW) and automatic emergency braking (AEB) systems in lane-changing scenarios, focusing on their detection range and detection angles. Real-world tests were conducted with a Tesla Model 3 and a KIA K8 to assess their detection capabilities. The experiments simulated common highway lane-changing scenarios, referencing Euro NCAP standards. Testing environments included a full-size target robot and a guided vehicle target to ensure accuracy. Preliminary tests established the test speed range and relative distances, while main tests focused on three key variables: time-to-collision (TTC) for FCW activation, TTC for AEB activation, and relative lateral positions of the target and test vehicles. The study also analyzed collisions despite FCW and AEB activation, identifying system limitations by examining deviations in TTC values and their correlation with collisions. These findings provide insights into the effectiveness and reliability of FCW and AEB systems under various conditions, aiding the advancement of ADAS technologies.</p>","PeriodicalId":50338,"journal":{"name":"International Journal of Automotive Technology","volume":"17 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Automotive Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12239-024-00146-z","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study aims to provide a detailed evaluation and comparison of the performance of forward collision warning (FCW) and automatic emergency braking (AEB) systems in lane-changing scenarios, focusing on their detection range and detection angles. Real-world tests were conducted with a Tesla Model 3 and a KIA K8 to assess their detection capabilities. The experiments simulated common highway lane-changing scenarios, referencing Euro NCAP standards. Testing environments included a full-size target robot and a guided vehicle target to ensure accuracy. Preliminary tests established the test speed range and relative distances, while main tests focused on three key variables: time-to-collision (TTC) for FCW activation, TTC for AEB activation, and relative lateral positions of the target and test vehicles. The study also analyzed collisions despite FCW and AEB activation, identifying system limitations by examining deviations in TTC values and their correlation with collisions. These findings provide insights into the effectiveness and reliability of FCW and AEB systems under various conditions, aiding the advancement of ADAS technologies.
期刊介绍:
The International Journal of Automotive Technology has as its objective the publication and dissemination of original research in all fields of AUTOMOTIVE TECHNOLOGY, SCIENCE and ENGINEERING. It fosters thus the exchange of ideas among researchers in different parts of the world and also among researchers who emphasize different aspects of the foundations and applications of the field.
Standing as it does at the cross-roads of Physics, Chemistry, Mechanics, Engineering Design and Materials Sciences, AUTOMOTIVE TECHNOLOGY is experiencing considerable growth as a result of recent technological advances. The Journal, by providing an international medium of communication, is encouraging this growth and is encompassing all aspects of the field from thermal engineering, flow analysis, structural analysis, modal analysis, control, vehicular electronics, mechatronis, electro-mechanical engineering, optimum design methods, ITS, and recycling. Interest extends from the basic science to technology applications with analytical, experimental and numerical studies.
The emphasis is placed on contributions that appear to be of permanent interest to research workers and engineers in the field. If furthering knowledge in the area of principal concern of the Journal, papers of primary interest to the innovative disciplines of AUTOMOTIVE TECHNOLOGY, SCIENCE and ENGINEERING may be published. Papers that are merely illustrations of established principles and procedures, even though possibly containing new numerical or experimental data, will generally not be published.
When outstanding advances are made in existing areas or when new areas have been developed to a definitive stage, special review articles will be considered by the editors.
No length limitations for contributions are set, but only concisely written papers are published. Brief articles are considered on the basis of technical merit.