Reduction in Chassis Dynamometer Test Time for Evaluating Energy Economy and Range of Light-Duty Battery Electric Vehicles

IF 1.5 4区 工程技术 Q3 ENGINEERING, MECHANICAL International Journal of Automotive Technology Pub Date : 2024-02-18 DOI:10.1007/s12239-024-00001-1
{"title":"Reduction in Chassis Dynamometer Test Time for Evaluating Energy Economy and Range of Light-Duty Battery Electric Vehicles","authors":"","doi":"10.1007/s12239-024-00001-1","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>In response to the climate crisis, nations are working to reduce emissions and improve energy efficiency, particularly in the transportation sector through the adoption of electric vehicles. However, the current official test methods for evaluating battery electric vehicle (BEV) energy economy and single-charge driving range are time-consuming, creating challenges for testing institutions and delaying the release of new models. The objective of this study is to compare the energy economy and single-charge driving range of BEVs using the different test methods, the full depleting test (e.g., multi cycle test (MCT), short multi cycle test, short multi cycle test plus) and partial depleting test (e.g., short process test (SPT)), with the aim of reducing the testing time on the chassis dynamometer. As a result of testing with three BEVs with different battery capacities, the test duration on the chassis dynamometer could be reduced by up to 85% compared to the MCT that is authorized test method by government. Each test has different repeatability, and SPT has a higher deviation from the MCT test results than other test methods. Overall, the study can provide reliable research outcomes conducive to the future improvement of official energy economy and single-charge driving range test standards for BEVs in each country.</p>","PeriodicalId":50338,"journal":{"name":"International Journal of Automotive Technology","volume":"35 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Automotive Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12239-024-00001-1","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In response to the climate crisis, nations are working to reduce emissions and improve energy efficiency, particularly in the transportation sector through the adoption of electric vehicles. However, the current official test methods for evaluating battery electric vehicle (BEV) energy economy and single-charge driving range are time-consuming, creating challenges for testing institutions and delaying the release of new models. The objective of this study is to compare the energy economy and single-charge driving range of BEVs using the different test methods, the full depleting test (e.g., multi cycle test (MCT), short multi cycle test, short multi cycle test plus) and partial depleting test (e.g., short process test (SPT)), with the aim of reducing the testing time on the chassis dynamometer. As a result of testing with three BEVs with different battery capacities, the test duration on the chassis dynamometer could be reduced by up to 85% compared to the MCT that is authorized test method by government. Each test has different repeatability, and SPT has a higher deviation from the MCT test results than other test methods. Overall, the study can provide reliable research outcomes conducive to the future improvement of official energy economy and single-charge driving range test standards for BEVs in each country.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
减少底盘测功机测试时间,评估轻型电池电动汽车的能源经济性和续航里程
摘要 为应对气候危机,各国都在努力减少排放和提高能效,特别是在交通领域采用电动汽车。然而,目前用于评估电池电动汽车(BEV)能源经济性和单次充电行驶里程的官方测试方法耗时较长,给测试机构带来了挑战,并推迟了新车型的发布。本研究的目的是使用不同的测试方法,即完全耗尽测试(如多循环测试 (MCT)、短多循环测试、短多循环附加测试)和部分耗尽测试(如短过程测试 (SPT)),比较 BEV 的能量经济性和单次充电行驶里程,以减少底盘测功机上的测试时间。通过对三种不同电池容量的 BEV 进行测试,底盘测功机上的测试时间可比政府授权测试方法 MCT 缩短 85%。每种测试都有不同的重复性,与其他测试方法相比,SPT 与 MCT 测试结果的偏差更大。总之,本研究可提供可靠的研究成果,有利于今后完善各国官方的 BEV 能源经济性和单次充电行驶里程测试标准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Automotive Technology
International Journal of Automotive Technology 工程技术-工程:机械
CiteScore
3.10
自引率
12.50%
发文量
129
审稿时长
6 months
期刊介绍: The International Journal of Automotive Technology has as its objective the publication and dissemination of original research in all fields of AUTOMOTIVE TECHNOLOGY, SCIENCE and ENGINEERING. It fosters thus the exchange of ideas among researchers in different parts of the world and also among researchers who emphasize different aspects of the foundations and applications of the field. Standing as it does at the cross-roads of Physics, Chemistry, Mechanics, Engineering Design and Materials Sciences, AUTOMOTIVE TECHNOLOGY is experiencing considerable growth as a result of recent technological advances. The Journal, by providing an international medium of communication, is encouraging this growth and is encompassing all aspects of the field from thermal engineering, flow analysis, structural analysis, modal analysis, control, vehicular electronics, mechatronis, electro-mechanical engineering, optimum design methods, ITS, and recycling. Interest extends from the basic science to technology applications with analytical, experimental and numerical studies. The emphasis is placed on contributions that appear to be of permanent interest to research workers and engineers in the field. If furthering knowledge in the area of principal concern of the Journal, papers of primary interest to the innovative disciplines of AUTOMOTIVE TECHNOLOGY, SCIENCE and ENGINEERING may be published. Papers that are merely illustrations of established principles and procedures, even though possibly containing new numerical or experimental data, will generally not be published. When outstanding advances are made in existing areas or when new areas have been developed to a definitive stage, special review articles will be considered by the editors. No length limitations for contributions are set, but only concisely written papers are published. Brief articles are considered on the basis of technical merit.
期刊最新文献
Testbed and Analysis of Highway Cut-In Scenarios for Evaluating the AEB and FCW Functions Prediction Models of Overall Thermal Sensation and Comfort in Vehicle Cabin Based on Field Experiments Efficient Path Planning for Automated Valet Parking: Integrating Hybrid A* Search with Geometric Curves Road Feel Simulation Method with Rack Force Observer for Intelligent Vehicle Steer-by-Wire System Multi-physical Field Coupling Analysis of Flat Wire Motor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1