{"title":"First Study of the PIKACHU Project: Development and Evaluation of High-Purity Gd3Ga3Al2O12:Ce Crystals for 160Gd Double Beta Decay Search","authors":"Takumi Omori, Takashi Iida, Azusa Gando, Keishi Hosokawa, Kei Kamada, Keita Mizukoshi, Yasuhiro Shoji, Masao Yoshino, Ken-Ichi Fushimi, Hisanori Suzuki, Kotaro Takahashi","doi":"10.1093/ptep/ptae026","DOIUrl":null,"url":null,"abstract":"Uncovering neutrinoless double beta decay (0ν2β) is crucial for confirming neutrinos’ Majorana characteristics. The decay rate of 0νββ is theoretically uncertain, influenced by nuclear matrix elements that vary across nuclides. To reduce this uncertainty, precise measurement of the half-life of neutrino-emitting double beta decay (2ν2β) in different nuclides is essential. We have launched the PIKACHU (Pure Inorganic scintillator experiment in KAmioka for CHallenging Underground sciences) project to fabricate high-purity Ce-doped Gd3Ga3Al2O12 (GAGG) single crystals and use them to study the double beta decay of 160Gd. Predictions from two theoretical models on nuclear matrix element calculations for 2ν2β in 160Gd show a significant discrepancy in estimated half-lives, differing by approximately an order of magnitude. If the lower half-life estimation holds true, detecting 2ν2β in 160Gd could be achievable with a sensitivity enhancement slightly more than an order of magnitude compared to prior investigations using Ce-doped Gd2SiO5 (GSO) crystal. We have successfully developed GAGG crystals with purity levels surpassing previous standards through refined purification and selection of raw materials. Our experiments with these crystals indicate the feasibility of reaching sensitivities exceeding those of earlier studies. This paper discusses the ongoing development and scintillator performance evaluation of High-purity GAGG crystals, along with the anticipated future prospects of the PIKACHU experiment.","PeriodicalId":20710,"journal":{"name":"Progress of Theoretical and Experimental Physics","volume":"35 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress of Theoretical and Experimental Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1093/ptep/ptae026","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
Uncovering neutrinoless double beta decay (0ν2β) is crucial for confirming neutrinos’ Majorana characteristics. The decay rate of 0νββ is theoretically uncertain, influenced by nuclear matrix elements that vary across nuclides. To reduce this uncertainty, precise measurement of the half-life of neutrino-emitting double beta decay (2ν2β) in different nuclides is essential. We have launched the PIKACHU (Pure Inorganic scintillator experiment in KAmioka for CHallenging Underground sciences) project to fabricate high-purity Ce-doped Gd3Ga3Al2O12 (GAGG) single crystals and use them to study the double beta decay of 160Gd. Predictions from two theoretical models on nuclear matrix element calculations for 2ν2β in 160Gd show a significant discrepancy in estimated half-lives, differing by approximately an order of magnitude. If the lower half-life estimation holds true, detecting 2ν2β in 160Gd could be achievable with a sensitivity enhancement slightly more than an order of magnitude compared to prior investigations using Ce-doped Gd2SiO5 (GSO) crystal. We have successfully developed GAGG crystals with purity levels surpassing previous standards through refined purification and selection of raw materials. Our experiments with these crystals indicate the feasibility of reaching sensitivities exceeding those of earlier studies. This paper discusses the ongoing development and scintillator performance evaluation of High-purity GAGG crystals, along with the anticipated future prospects of the PIKACHU experiment.
期刊介绍:
Progress of Theoretical and Experimental Physics (PTEP) is an international journal that publishes articles on theoretical and experimental physics. PTEP is a fully open access, online-only journal published by the Physical Society of Japan.
PTEP is the successor to Progress of Theoretical Physics (PTP), which terminated in December 2012 and merged into PTEP in January 2013.
PTP was founded in 1946 by Hideki Yukawa, the first Japanese Nobel Laureate. PTEP, the successor journal to PTP, has a broader scope than that of PTP covering both theoretical and experimental physics.
PTEP mainly covers areas including particles and fields, nuclear physics, astrophysics and cosmology, beam physics and instrumentation, and general and mathematical physics.