Yao Chen, Lu Sun, Hengyu Shi, Guanghua Mao, Ting Zhao, Weiwei Feng, Liuqing Yang, Xiangyang Wu
{"title":"Protective Effect of Protocatechuic Acid on Oxidative Damage and Cognitive Impairment in Pb-Induced Rats.","authors":"Yao Chen, Lu Sun, Hengyu Shi, Guanghua Mao, Ting Zhao, Weiwei Feng, Liuqing Yang, Xiangyang Wu","doi":"10.1007/s12011-024-04095-7","DOIUrl":null,"url":null,"abstract":"<p><p>Protocatechuic acid (PCA), a class of water-soluble phenolic acid abundant in the human diet, has been shown to be of great nutritional interest and to have medicinal value. However, the protective effects against lead (Pb)-induced body injury have not been elucidated. In this study, we explored the protective effect of PCA on Pb-induced oxidative damage and cognitive impairment in rats. The results showed that PCA could reduce the Pb content in rat bodies (blood, bone, brain, liver, and kidney) after Pb exposure. Moreover, PCA may inhibit Pb-induced oxidative damage by increasing the activity of antioxidant enzymes such as superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) and decreasing the level of malondialdehyde (MDA) in the brain, liver, and kidney. In addition, PCA may alleviate Pb-induced learning and memory impairment by upregulating neurotransmitter levels; maintaining the normal function of N-methyl-D-aspartate receptors (NMDARs); and promoting Ca<sup>2+</sup> influx, thus activating signaling molecules, related protein kinases, and transcription factors in the cAMP-PKA-CREB pathway. In general, PCA could reduce oxidative stress and ameliorate the learning and memory deficits in Pb-treated rats, indicating that PCA may be an effective preventive agent and treatment or plumbism.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12011-024-04095-7","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/19 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Protocatechuic acid (PCA), a class of water-soluble phenolic acid abundant in the human diet, has been shown to be of great nutritional interest and to have medicinal value. However, the protective effects against lead (Pb)-induced body injury have not been elucidated. In this study, we explored the protective effect of PCA on Pb-induced oxidative damage and cognitive impairment in rats. The results showed that PCA could reduce the Pb content in rat bodies (blood, bone, brain, liver, and kidney) after Pb exposure. Moreover, PCA may inhibit Pb-induced oxidative damage by increasing the activity of antioxidant enzymes such as superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) and decreasing the level of malondialdehyde (MDA) in the brain, liver, and kidney. In addition, PCA may alleviate Pb-induced learning and memory impairment by upregulating neurotransmitter levels; maintaining the normal function of N-methyl-D-aspartate receptors (NMDARs); and promoting Ca2+ influx, thus activating signaling molecules, related protein kinases, and transcription factors in the cAMP-PKA-CREB pathway. In general, PCA could reduce oxidative stress and ameliorate the learning and memory deficits in Pb-treated rats, indicating that PCA may be an effective preventive agent and treatment or plumbism.