White light emission in 0D halide perovskite [(CH3)3S]2SnCl6·H2O crystals through variation of doping ns2 ions.

IF 4.1 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Frontiers of Optoelectronics Pub Date : 2024-02-20 DOI:10.1007/s12200-024-00109-3
Yitong Lin, Yu Zhong, Yangpeng Lin, Jiawei Lin, Lei Pang, Zhilong Zhang, Yi Zhao, Xiao-Ying Huang, Ke-Zhao Du
{"title":"White light emission in 0D halide perovskite [(CH<sub>3</sub>)<sub>3</sub>S]<sub>2</sub>SnCl<sub>6</sub>·H<sub>2</sub>O crystals through variation of doping ns<sup>2</sup> ions.","authors":"Yitong Lin, Yu Zhong, Yangpeng Lin, Jiawei Lin, Lei Pang, Zhilong Zhang, Yi Zhao, Xiao-Ying Huang, Ke-Zhao Du","doi":"10.1007/s12200-024-00109-3","DOIUrl":null,"url":null,"abstract":"<p><p>With the rapid development of white LEDs, the research of new and efficient white light emitting materials has attracted increasing attention. Zero dimensional (0D) organic-inorganic hybrid metal halide perovskites with superior luminescent property are promising candidates for LED application, due to their abundant and tailorable structure. Herein, [(CH<sub>3</sub>)<sub>3</sub>S]<sub>2</sub>SnCl<sub>6</sub>·H<sub>2</sub>O is synthesized as a host for dopant ions Bi<sup>3+</sup> and Sb<sup>3+</sup>. The Sb<sup>3+</sup> doped, or Bi<sup>3+</sup>/Sb<sup>3+</sup> co-doped, [(CH<sub>3</sub>)<sub>3</sub>S]<sub>2</sub>SnCl<sub>6</sub>·H<sub>2</sub>O has a tunable optical emission spectrum by means of varying dopant ratio and excitation wavelength. As a result, we can achieve single-phase materials suitable for emission ranging from cold white light to warm white light. The intrinsic mechanism is examined in this work, to clarify the dopant effect on the optical properties. The high stability of title crystalline material, against water, oxygen and heat, makes it promising for further application.</p>","PeriodicalId":12685,"journal":{"name":"Frontiers of Optoelectronics","volume":"17 1","pages":"6"},"PeriodicalIF":4.1000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10876505/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Optoelectronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12200-024-00109-3","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

With the rapid development of white LEDs, the research of new and efficient white light emitting materials has attracted increasing attention. Zero dimensional (0D) organic-inorganic hybrid metal halide perovskites with superior luminescent property are promising candidates for LED application, due to their abundant and tailorable structure. Herein, [(CH3)3S]2SnCl6·H2O is synthesized as a host for dopant ions Bi3+ and Sb3+. The Sb3+ doped, or Bi3+/Sb3+ co-doped, [(CH3)3S]2SnCl6·H2O has a tunable optical emission spectrum by means of varying dopant ratio and excitation wavelength. As a result, we can achieve single-phase materials suitable for emission ranging from cold white light to warm white light. The intrinsic mechanism is examined in this work, to clarify the dopant effect on the optical properties. The high stability of title crystalline material, against water, oxygen and heat, makes it promising for further application.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过掺杂 ns2 离子的变化实现 0D 卤化物包晶 [(CH3)3S]2SnCl6-H2O 晶体的白光发射。
随着白光 LED 的快速发展,新型高效白光发光材料的研究日益受到关注。具有优异发光性能的零维(0D)有机-无机杂化金属卤化物过氧化物因其丰富且可定制的结构而成为 LED 应用的理想候选材料。本文合成了[(CH3)3S]2SnCl6-H2O,作为掺杂离子 Bi3+ 和 Sb3+ 的宿主。通过改变掺杂比例和激发波长,掺杂 Sb3+ 或 Bi3+/Sb3+ 共掺杂的 [(CH3)3S]2SnCl6-H2O 具有可调的光学发射光谱。因此,我们可以获得适用于从冷白光到暖白光发射的单相材料。这项工作对其内在机理进行了研究,以阐明掺杂剂对光学特性的影响。标题晶体材料对水、氧和热的高稳定性使其具有进一步应用的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Frontiers of Optoelectronics
Frontiers of Optoelectronics ENGINEERING, ELECTRICAL & ELECTRONIC-
CiteScore
7.80
自引率
0.00%
发文量
583
期刊介绍: Frontiers of Optoelectronics seeks to provide a multidisciplinary forum for a broad mix of peer-reviewed academic papers in order to promote rapid communication and exchange between researchers in China and abroad. It introduces and reflects significant achievements being made in the field of photonics or optoelectronics. The topics include, but are not limited to, semiconductor optoelectronics, nano-photonics, information photonics, energy photonics, ultrafast photonics, biomedical photonics, nonlinear photonics, fiber optics, laser and terahertz technology and intelligent photonics. The journal publishes reviews, research articles, letters, comments, special issues and so on. Frontiers of Optoelectronics especially encourages papers from new emerging and multidisciplinary areas, papers reflecting the international trends of research and development, and on special topics reporting progress made in the field of optoelectronics. All published papers will reflect the original thoughts of researchers and practitioners on basic theories, design and new technology in optoelectronics. Frontiers of Optoelectronics is strictly peer-reviewed and only accepts original submissions in English. It is a fully OA journal and the APCs are covered by Higher Education Press and Huazhong University of Science and Technology. ● Presents the latest developments in optoelectronics and optics ● Emphasizes the latest developments of new optoelectronic materials, devices, systems and applications ● Covers industrial photonics, information photonics, biomedical photonics, energy photonics, laser and terahertz technology, and more
期刊最新文献
Correction: White light emission in 0D halide perovskite [(CH3)3S]2SnCl6·H2O crystals through variation of doping ns2 ions. Multi-octave two-color soliton frequency comb in integrated chalcogenide microresonators. Vehicular Mini-LED backlight display inspection based on residual global context mechanism. Plasma photonic crystal 'kaleidoscope' with flexible control of topology and electromagnetism. Information processing at the speed of light.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1