{"title":"Avoidance, confusion or solitude? Modelling how noise pollution affects whale migration.","authors":"Stuart T Johnston, Kevin J Painter","doi":"10.1186/s40462-024-00458-w","DOIUrl":null,"url":null,"abstract":"<p><p>Many baleen whales are renowned for their acoustic communication. Under pristine conditions, this communication can plausibly occur across hundreds of kilometres. Frequent vocalisations may allow a dispersed migrating group to maintain contact, and therefore benefit from improved navigation via the \"wisdom of the crowd\". Human activities have considerably inflated ocean noise levels. Here we develop a data-driven mathematical model to investigate how ambient noise levels may inhibit whale migration. Mathematical models allow us to simultaneously simulate collective whale migration behaviour, auditory cue detection, and noise propagation. Rising ambient noise levels are hypothesised to influence navigation through three mechanisms: (i) diminished communication space; (ii) reduced ability to hear external sound cues and; (iii) triggering noise avoidance behaviour. Comparing pristine and current soundscapes, we observe navigation impairment that ranges from mild (increased journey time) to extreme (failed navigation). Notably, the three mechanisms induce qualitatively different impacts on migration behaviour. We demonstrate the model's potential predictive power, exploring the extent to which migration may be altered under future shipping and construction scenarios.</p>","PeriodicalId":54288,"journal":{"name":"Movement Ecology","volume":"12 1","pages":"17"},"PeriodicalIF":3.4000,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10875784/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Movement Ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s40462-024-00458-w","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Many baleen whales are renowned for their acoustic communication. Under pristine conditions, this communication can plausibly occur across hundreds of kilometres. Frequent vocalisations may allow a dispersed migrating group to maintain contact, and therefore benefit from improved navigation via the "wisdom of the crowd". Human activities have considerably inflated ocean noise levels. Here we develop a data-driven mathematical model to investigate how ambient noise levels may inhibit whale migration. Mathematical models allow us to simultaneously simulate collective whale migration behaviour, auditory cue detection, and noise propagation. Rising ambient noise levels are hypothesised to influence navigation through three mechanisms: (i) diminished communication space; (ii) reduced ability to hear external sound cues and; (iii) triggering noise avoidance behaviour. Comparing pristine and current soundscapes, we observe navigation impairment that ranges from mild (increased journey time) to extreme (failed navigation). Notably, the three mechanisms induce qualitatively different impacts on migration behaviour. We demonstrate the model's potential predictive power, exploring the extent to which migration may be altered under future shipping and construction scenarios.
Movement EcologyAgricultural and Biological Sciences-Ecology, Evolution, Behavior and Systematics
CiteScore
6.60
自引率
4.90%
发文量
47
审稿时长
23 weeks
期刊介绍:
Movement Ecology is an open-access interdisciplinary journal publishing novel insights from empirical and theoretical approaches into the ecology of movement of the whole organism - either animals, plants or microorganisms - as the central theme. We welcome manuscripts on any taxa and any movement phenomena (e.g. foraging, dispersal and seasonal migration) addressing important research questions on the patterns, mechanisms, causes and consequences of organismal movement. Manuscripts will be rigorously peer-reviewed to ensure novelty and high quality.