Natural Compound Dioscin Targeting Multiple Cancer Pathways through its High Affinity Binding to B Cell Lymphoma-2.

Shweta Gulia, Prakash Chandra, Asmita Das
{"title":"Natural Compound Dioscin Targeting Multiple Cancer Pathways through its High Affinity Binding to B Cell Lymphoma-2.","authors":"Shweta Gulia, Prakash Chandra, Asmita Das","doi":"10.2174/0115734099279130231211053542","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>The study aimed to explore the crucial genes involved in cancer-related biological processes, including EMT, autophagy, apoptosis, anoikis, and metastasis. It also sought to identify common genes among the pathways linked to these biological processes, determine the level of Bcl-2 expression in various types of cancers, and find a potent inhibitor of Bcl-2 among natural compounds.</p><p><strong>Methods: </strong>Common genes involved in the pathways related to EMT, autophagy, apoptosis, anoikis, and metastasis were explored, and the level of the most frequently overexpressed gene that was Bcl-2, in various types of cancers was analyzed by gene expression analysis. A set of 102 natural compounds was sorted according to their docking scores using molecular docking and filtering. The top-ranked molecule was chosen for additional molecular dynamics (MD) simulation for 100 ns. Differential gene expression analysis was performed for Dioscin using GEO2R.</p><p><strong>Results: </strong>The study identified four common genes, Bcl-2, Bax, BIRC3, and CHUK, among the pathways linked to EMT, autophagy, apoptosis, anoikis, and metastasis. Bcl-2 was highly overexpressed in many cancers, including Acute Myeloid Leukemia, Diffuse large B cell lymphoma, and Thymoma. The Dioscin structure in the Bcl-2 binding site received the highest docking score and the most relevant interactions. Dioscin's determined binding free energy by MM/GBSA was -52.21 kcal/mol, while the same calculated by MM/PBSA was -9.18 kcal/mol. A p-value of less than 0.05 was used to determine the statistical significance of the analysis performed using GEO2R. It was observed that Dioscin downregulates Bcl-2, BIRC3, and CHUK and upregulates the pro-apoptotic protein Bax.</p><p><strong>Conclusion: </strong>The study concluded that Dioscin has the potential to act as a protein inhibitor, with a noteworthy value of binding free energy and relevant interactions with the Bcl-2 binding site. Dioscin might be a good alternative for targeting multiple cancer pathways through a single target.</p>","PeriodicalId":93961,"journal":{"name":"Current computer-aided drug design","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current computer-aided drug design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0115734099279130231211053542","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: The study aimed to explore the crucial genes involved in cancer-related biological processes, including EMT, autophagy, apoptosis, anoikis, and metastasis. It also sought to identify common genes among the pathways linked to these biological processes, determine the level of Bcl-2 expression in various types of cancers, and find a potent inhibitor of Bcl-2 among natural compounds.

Methods: Common genes involved in the pathways related to EMT, autophagy, apoptosis, anoikis, and metastasis were explored, and the level of the most frequently overexpressed gene that was Bcl-2, in various types of cancers was analyzed by gene expression analysis. A set of 102 natural compounds was sorted according to their docking scores using molecular docking and filtering. The top-ranked molecule was chosen for additional molecular dynamics (MD) simulation for 100 ns. Differential gene expression analysis was performed for Dioscin using GEO2R.

Results: The study identified four common genes, Bcl-2, Bax, BIRC3, and CHUK, among the pathways linked to EMT, autophagy, apoptosis, anoikis, and metastasis. Bcl-2 was highly overexpressed in many cancers, including Acute Myeloid Leukemia, Diffuse large B cell lymphoma, and Thymoma. The Dioscin structure in the Bcl-2 binding site received the highest docking score and the most relevant interactions. Dioscin's determined binding free energy by MM/GBSA was -52.21 kcal/mol, while the same calculated by MM/PBSA was -9.18 kcal/mol. A p-value of less than 0.05 was used to determine the statistical significance of the analysis performed using GEO2R. It was observed that Dioscin downregulates Bcl-2, BIRC3, and CHUK and upregulates the pro-apoptotic protein Bax.

Conclusion: The study concluded that Dioscin has the potential to act as a protein inhibitor, with a noteworthy value of binding free energy and relevant interactions with the Bcl-2 binding site. Dioscin might be a good alternative for targeting multiple cancer pathways through a single target.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
天然化合物 Dioscin 通过与 B 细胞淋巴瘤-2 的高亲和力结合靶向多种癌症途径。
研究目的该研究旨在探索与癌症相关的生物学过程中的关键基因,包括EMT、自噬、凋亡、anoikis和转移。研究还试图找出与这些生物过程相关的通路中的共同基因,确定 Bcl-2 在各类癌症中的表达水平,并在天然化合物中找到一种有效的 Bcl-2 抑制剂:方法:通过基因表达分析,探讨了与EMT、自噬、凋亡、瘤变和转移相关的通路中的常见基因,并分析了Bcl-2这一最常见基因在各类癌症中的高表达水平。通过分子对接和过滤,根据对接得分对 102 种天然化合物进行了排序。选择排名靠前的分子进行 100 ns 的分子动力学(MD)模拟。利用 GEO2R 对 Dioscin 进行了差异基因表达分析:研究在与 EMT、自噬、凋亡、anoikis 和转移相关的通路中发现了四个常见基因:Bcl-2、Bax、BIRC3 和 CHUK。Bcl-2 在急性髓性白血病、弥漫性大 B 细胞淋巴瘤和胸腺瘤等多种癌症中高度过表达。Bcl-2 结合位点上的 Dioscin 结构获得了最高的对接得分和最相关的相互作用。MM/GBSA 测定的 Dioscin 结合自由能为 -52.21 kcal/mol,而 MM/PBSA 计算的结合自由能为 -9.18 kcal/mol。使用 GEO2R 进行的分析以 p 值小于 0.05 为统计意义。研究观察到,Dioscin 下调 Bcl-2、BIRC3 和 CHUK,上调促凋亡蛋白 Bax:研究认为,Dioscin 具有作为蛋白质抑制剂的潜力,其结合自由能值值得注意,并与 Bcl-2 结合位点有相关的相互作用。Dioscin 可能是通过单一靶点靶向多种癌症途径的良好选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Study on the Mechanism of Alpinia officinarum Hance in the Improvement of Insulin Resistance through Network Pharmacology, Molecular Docking and in vitro Experimental Verification. Synthesis, Biological Evaluation, Molecular Docking Studies and ADMET Prediction of Oxindole-Based Hybrids for the Treatment of Tuberculosis. Identifying Novel Inhibitors for Dengue NS2B-NS3 Protease by Combining Topological similarity, Molecular Dynamics, MMGBSA and SiteMap Analysis. Discovery of Two GSK3β Inhibitors from Sophora flavescens Ait. using Structure-based Virtual Screening and Bioactivity Evaluation. Berberine Ameliorates High-fat-induced Insulin Resistance in HepG2 Cells by Modulating PPARs Signaling Pathway.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1