首页 > 最新文献

Current computer-aided drug design最新文献

英文 中文
Network Pharmacology and Experimental Validation to Reveal the Pharmacological Mechanisms of Gynostemma pentaphylla against Acute Pharyngitis.
Pub Date : 2025-02-04 DOI: 10.2174/0115734099324793250116133159
Juan Zhong, Xiaozhong Wu, Chunxi Huang, Yongqiang Li, Min Huang, Liuyan Xu, Jianfeng Lu, Lili Pang, Qiuju Huang, Jing Chen

Background: Acute pharyngitis (AP) is a prevalent ailment. Gynostemma pentaphylla (GP), a traditional Chinese medicine (TCM), may treat AP due to its anti-tumor and anti-inflammatory properties, but this remains unexplored.

Methods: This study utilized the TCMSP and Swiss Target Prediction databases to analyze GP's chemical composition and target proteins. The Genecards database was used to identify targets relevant to AP. A PPI network diagram of drug-disease intersection targets was created using the STRING database, and Cytoscape was utilized to create a network visualization diagram of "GP active components-targets-AP" in order to determine key active components of GP in treating AP. Gene ontology (GO) and biological pathway (KEGG) enrichment analyses were conducted on targets in the David database. Molecular docking verification of key targets and components was performed using AutoDock Vina software. In animal experiments, a rat model of AP was induced by a 15% concentrated ammonia solution, and HE staining was conducted to observe histopathological changes in the rat pharynx after intragastric administration of Houyanqing. ELISA was used to detect expression levels of serum interleukin-1-beta (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor (TNF-α).

Results: A total of 18 active ingredients were screened from GP, among which Ruvoside _ qt, Rhamnazin, 3 ' -methyleriodictyol, and sitosterol were five key active ingredients. The key targets involved EGFR, STAT3, MAPK3, SRC, AKT1, etc. KEGG enrichment analysis showed that GP mainly acted on Pathways in cancer, P13K-AKT signaling Pathways, JAK-STAT signaling pathways, and other signaling pathways. Molecular docking results showed that four core compounds and five key targets met the energy matching. Animal experiments showed that compared with the normal group, the expression levels of IL-1β, IL-6, and TNF-α in the AP model group were significantly up-regulated (P < 0.05). In addition, compared with the model group, intragastric administration of the dexamethasone group and gypenosides group could alleviate the up-regulation of inflammatory factors in model rats, and the levels of IL-1β, IL-6, and TNF-α were decreased (P < 0.05).

Conclusion: This study predicted the possible targets of GP in the treatment of AP through network pharmacology. The results suggest that gypenosides may inhibit the expression of inflammatory factors by regulating Pathways in cancer, P13K-AKT, and JAK-STAT signaling pathways to treat AP.

{"title":"Network Pharmacology and Experimental Validation to Reveal the Pharmacological Mechanisms of Gynostemma pentaphylla against Acute Pharyngitis.","authors":"Juan Zhong, Xiaozhong Wu, Chunxi Huang, Yongqiang Li, Min Huang, Liuyan Xu, Jianfeng Lu, Lili Pang, Qiuju Huang, Jing Chen","doi":"10.2174/0115734099324793250116133159","DOIUrl":"https://doi.org/10.2174/0115734099324793250116133159","url":null,"abstract":"<p><strong>Background: </strong>Acute pharyngitis (AP) is a prevalent ailment. Gynostemma pentaphylla (GP), a traditional Chinese medicine (TCM), may treat AP due to its anti-tumor and anti-inflammatory properties, but this remains unexplored.</p><p><strong>Methods: </strong>This study utilized the TCMSP and Swiss Target Prediction databases to analyze GP's chemical composition and target proteins. The Genecards database was used to identify targets relevant to AP. A PPI network diagram of drug-disease intersection targets was created using the STRING database, and Cytoscape was utilized to create a network visualization diagram of \"GP active components-targets-AP\" in order to determine key active components of GP in treating AP. Gene ontology (GO) and biological pathway (KEGG) enrichment analyses were conducted on targets in the David database. Molecular docking verification of key targets and components was performed using AutoDock Vina software. In animal experiments, a rat model of AP was induced by a 15% concentrated ammonia solution, and HE staining was conducted to observe histopathological changes in the rat pharynx after intragastric administration of Houyanqing. ELISA was used to detect expression levels of serum interleukin-1-beta (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor (TNF-α).</p><p><strong>Results: </strong>A total of 18 active ingredients were screened from GP, among which Ruvoside _ qt, Rhamnazin, 3 ' -methyleriodictyol, and sitosterol were five key active ingredients. The key targets involved EGFR, STAT3, MAPK3, SRC, AKT1, etc. KEGG enrichment analysis showed that GP mainly acted on Pathways in cancer, P13K-AKT signaling Pathways, JAK-STAT signaling pathways, and other signaling pathways. Molecular docking results showed that four core compounds and five key targets met the energy matching. Animal experiments showed that compared with the normal group, the expression levels of IL-1β, IL-6, and TNF-α in the AP model group were significantly up-regulated (P < 0.05). In addition, compared with the model group, intragastric administration of the dexamethasone group and gypenosides group could alleviate the up-regulation of inflammatory factors in model rats, and the levels of IL-1β, IL-6, and TNF-α were decreased (P < 0.05).</p><p><strong>Conclusion: </strong>This study predicted the possible targets of GP in the treatment of AP through network pharmacology. The results suggest that gypenosides may inhibit the expression of inflammatory factors by regulating Pathways in cancer, P13K-AKT, and JAK-STAT signaling pathways to treat AP.</p>","PeriodicalId":93961,"journal":{"name":"Current computer-aided drug design","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143367050","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Qi-Gui-Jian-Gu Decoction Accelerates Osteogenesis and Fracture Healing by Activating the Wnt/β-Catenin Signaling Pathway.
Pub Date : 2025-02-04 DOI: 10.2174/0115734099345441250121101413
Siluo Wu, Jiayang Wang, Ziheng Luo, Bifeng Li, Liangliang Xu, Liuchao Hu, Rihe Hu

Background: Qi-Gui-Jian-Gu decoction (QGJG), as a clinical empirical formula, has clinical benefits in promoting bone formation, but the underlying mechanism for its application in treating fractures has not been investigated.

Methods: The potential therapeutic target and signaling pathway of QGJG for treating fractures were analyzed by network pharmacology. In vitro, we used bone marrow mesenchymal stem cells (MSCs) to evaluate osteogenic differentiation and mineralization by alizarin red staining, quantitative real-time polymerase chain reaction (qRT-PCR), western blot (WB), and immunofluorescence staining. In vivo, the 8w male SPF C57BL/6J mouse femoral fracture model was constructed, and the therapeutic effects of QGJG were evaluated.

Results: By network pharmacology analysis, we found that glycogen synthase kinase 3 beta (GSK3β) was a potential therapeutic target of QGJG for treating fractures. The canonical Wnt signaling pathway was selected as the potential molecular mechanism. QGJG was confirmed to upregulate the mRNA levels of alkaline phosphatase (ALP) and bone morphogenetic protein 2 (BMP2), thereby promoting osteogenic differentiation and mineralization. Mechanistically, QGJG inhibited GSK3β while increasing p-Ser9-GSK3β to increase β-catenin protein expression and its nuclear translocation, implying the activation of the canonical Wnt signaling pathway. In vivo, QGJG administration promoted fracture healing, as demonstrated by the up-regulation of OPN and Osx, and accelerated the progression of ossification at 2 and 3 weeks after surgery.

Conclusion: QGJG promotes osteogenic differentiation and fracture healing by activating the canonical Wnt pathway.

{"title":"Qi-Gui-Jian-Gu Decoction Accelerates Osteogenesis and Fracture Healing by Activating the Wnt/β-Catenin Signaling Pathway.","authors":"Siluo Wu, Jiayang Wang, Ziheng Luo, Bifeng Li, Liangliang Xu, Liuchao Hu, Rihe Hu","doi":"10.2174/0115734099345441250121101413","DOIUrl":"https://doi.org/10.2174/0115734099345441250121101413","url":null,"abstract":"<p><strong>Background: </strong>Qi-Gui-Jian-Gu decoction (QGJG), as a clinical empirical formula, has clinical benefits in promoting bone formation, but the underlying mechanism for its application in treating fractures has not been investigated.</p><p><strong>Methods: </strong>The potential therapeutic target and signaling pathway of QGJG for treating fractures were analyzed by network pharmacology. In vitro, we used bone marrow mesenchymal stem cells (MSCs) to evaluate osteogenic differentiation and mineralization by alizarin red staining, quantitative real-time polymerase chain reaction (qRT-PCR), western blot (WB), and immunofluorescence staining. In vivo, the 8w male SPF C57BL/6J mouse femoral fracture model was constructed, and the therapeutic effects of QGJG were evaluated.</p><p><strong>Results: </strong>By network pharmacology analysis, we found that glycogen synthase kinase 3 beta (GSK3β) was a potential therapeutic target of QGJG for treating fractures. The canonical Wnt signaling pathway was selected as the potential molecular mechanism. QGJG was confirmed to upregulate the mRNA levels of alkaline phosphatase (ALP) and bone morphogenetic protein 2 (BMP2), thereby promoting osteogenic differentiation and mineralization. Mechanistically, QGJG inhibited GSK3β while increasing p-Ser9-GSK3β to increase β-catenin protein expression and its nuclear translocation, implying the activation of the canonical Wnt signaling pathway. In vivo, QGJG administration promoted fracture healing, as demonstrated by the up-regulation of OPN and Osx, and accelerated the progression of ossification at 2 and 3 weeks after surgery.</p><p><strong>Conclusion: </strong>QGJG promotes osteogenic differentiation and fracture healing by activating the canonical Wnt pathway.</p>","PeriodicalId":93961,"journal":{"name":"Current computer-aided drug design","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143367062","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparative Study on Sedative and Hypnotic Effects of Crude and Parched Semen Ziziphi Spinosae: Integration of Network Pharmacology and In Vivo Pharmacological Evaluation.
Pub Date : 2025-01-22 DOI: 10.2174/0115734099281920240730051328
Jing Xia, Ming Cai, Bo Xu, Guang-Jing Xie, Ping Wang

Objective: This study aimed to investigate the medicinal properties of SZS before and after processing and provide novel insights into its potential for treating insomnia.

Methods: This study employed the network pharmacology platform to gather information on the chemical composition of SZS, human targets, genes, molecular networks, and pathways associated with insomnia treatment using SZS. Liquid chromatography-tandem mass spectrometry (LC-MS/ MS) was utilized to analyze the chemical profiles of crude SZS, parched SZS, and their combined decoction. The effects of different SZS products on p-chlorophenylalanine-induced insomnia mice were evaluated through pentobarbital-induced sleep tests, behavioral analyses, examination of brain tissue-related mRNA levels, and measurement of plasma neurotransmitters, aiming to explore the sedative and hypnotic effects of various SZS products.

Results: SZS was found to contain a total of 47 genes, including 22 target genes associated with insomnia. These genes may contribute to the sedative and hypnotic effects through 9 related pathways and 69 biological processes. The active components of SZS remained consistent before and after processing. Jujuboside B was found in higher concentrations in crude SZS, while jujuboside A was more abundant in parched SZS. Additionally, SZS exhibited reduced locomotor activity in mice, enhanced the hypnotic effect of pentobarbital sodium, and decreased the levels of acetylcholinesterase, α-1B adrenergic receptor, and solute carrier family 6 member 4 mRNA in the cortex and hippocampus of mice. The levels of acetylcholine, choline acetyltransferase, 5-hydroxyindoleacetic acid, and glutamate in plasma increased, with the hypnotic effect being proportional to the dosage of the drug.

Conclusion: SZS demonstrates sedative and hypnotic effects, potentially mediated by its influence on neurotransmitter levels and related receptors within the central nervous system. There was a slight variation in regulatory capabilities before and after SZS processing, with the combined decoction of crude and parched SZS exhibiting a more pronounced effect, particularly at higher dosages.

{"title":"Comparative Study on Sedative and Hypnotic Effects of Crude and Parched Semen Ziziphi Spinosae: Integration of Network Pharmacology and In Vivo Pharmacological Evaluation.","authors":"Jing Xia, Ming Cai, Bo Xu, Guang-Jing Xie, Ping Wang","doi":"10.2174/0115734099281920240730051328","DOIUrl":"https://doi.org/10.2174/0115734099281920240730051328","url":null,"abstract":"<p><strong>Objective: </strong>This study aimed to investigate the medicinal properties of SZS before and after processing and provide novel insights into its potential for treating insomnia.</p><p><strong>Methods: </strong>This study employed the network pharmacology platform to gather information on the chemical composition of SZS, human targets, genes, molecular networks, and pathways associated with insomnia treatment using SZS. Liquid chromatography-tandem mass spectrometry (LC-MS/ MS) was utilized to analyze the chemical profiles of crude SZS, parched SZS, and their combined decoction. The effects of different SZS products on p-chlorophenylalanine-induced insomnia mice were evaluated through pentobarbital-induced sleep tests, behavioral analyses, examination of brain tissue-related mRNA levels, and measurement of plasma neurotransmitters, aiming to explore the sedative and hypnotic effects of various SZS products.</p><p><strong>Results: </strong>SZS was found to contain a total of 47 genes, including 22 target genes associated with insomnia. These genes may contribute to the sedative and hypnotic effects through 9 related pathways and 69 biological processes. The active components of SZS remained consistent before and after processing. Jujuboside B was found in higher concentrations in crude SZS, while jujuboside A was more abundant in parched SZS. Additionally, SZS exhibited reduced locomotor activity in mice, enhanced the hypnotic effect of pentobarbital sodium, and decreased the levels of acetylcholinesterase, α-1B adrenergic receptor, and solute carrier family 6 member 4 mRNA in the cortex and hippocampus of mice. The levels of acetylcholine, choline acetyltransferase, 5-hydroxyindoleacetic acid, and glutamate in plasma increased, with the hypnotic effect being proportional to the dosage of the drug.</p><p><strong>Conclusion: </strong>SZS demonstrates sedative and hypnotic effects, potentially mediated by its influence on neurotransmitter levels and related receptors within the central nervous system. There was a slight variation in regulatory capabilities before and after SZS processing, with the combined decoction of crude and parched SZS exhibiting a more pronounced effect, particularly at higher dosages.</p>","PeriodicalId":93961,"journal":{"name":"Current computer-aided drug design","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143026104","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Computational Evaluation of Punica granatum Leaf Phytochemicals against Multi-drug Resistant E. coli: Molecular Docking, ADMET, MD Simulation, and DFT Studies. 石榴叶植物化学物质对抗多重耐药大肠杆菌的计算评价:分子对接、ADMET、MD模拟和DFT研究。
Pub Date : 2025-01-09 DOI: 10.2174/0115734099343126241105102839
Shivam Mishra, Shristi Modanwal, Prabhat Kumar, Ashutosh Mishra, Nidhi Mishra

Introduction: Multidrug-resistant (MDR) E. coli presents a significant challenge in clinical settings, necessitating the exploration of novel therapeutic agents. Phytochemicals from Punica granatum (pomegranate) leaves have shown potential antibacterial properties. This study aims to identify and evaluate the efficacy of these phytochemicals against MDR E. coli.

Objectives: This study aims to identify and evaluate the efficacy of most potential phytochemical of Punica granatum leaf against MDR E. coli. through molecular docking, adme, toxicity, molecular dynamic simulation, MMPBSA and DFT approaches.

Methods: We performed molecular docking of 11 phytochemicals from the IMPPAT database with four MDR E. coli targets: 1AJ6, 1FJ8, 4BJP, and 6BU3. Granatin B demonstrated the best binding affinity and was further analyzed. ADME (Absorption, Distribution, Metabolism, and Excretion) and toxicity analyses were conducted to assess its pharmacokinetic properties and safety profile. Molecular Dynamics (MD) simulations were performed to evaluate the stability of Granatin B with the targets. Finally, density functional theory (DFT) analysis was carried out to understand the electronic properties and reactivity of Granatin B.

Results: Granatin B exhibited the highest binding affinity among the 11 phytochemicals, indicating strong potential as an inhibitor of MDR E. coli. ADME analysis revealed favorable pharmacokinetic properties and toxicity analysis confirmed that Granatin B is non-toxic. MD simulations showed stable interactions between Granatin B and all four targets. DFT analysis provided insights into the electronic properties and reactive sites of Granatin B, supporting its potential mechanism of action.

Conclusion: Granatin B from Punica granatum leaves is a promising candidate for treating MDR E. coli infections. The integration of molecular docking, ADME, toxicity, MD simulations, and DFT analysis underscores its therapeutic potential and paves the way for further experimental validation and development as a novel antibacterial agent.

简介:耐多药(MDR)大肠杆菌在临床环境中提出了重大挑战,需要探索新的治疗药物。石榴叶中的植物化学物质显示出潜在的抗菌特性。本研究旨在鉴定和评价这些植物化学物质对耐多药大肠杆菌的疗效。目的:鉴定和评价石榴叶中大部分潜在的植物化学物质对耐多药大肠杆菌的药效。通过分子对接、adme、毒性、分子动力学模拟、MMPBSA和DFT等方法。方法:将IMPPAT数据库中的11种植物化学物质与4个MDR大肠杆菌靶点(1AJ6、1FJ8、4BJP和6BU3)进行分子对接。Granatin B表现出最好的结合亲和力,并进一步分析。进行了ADME(吸收、分布、代谢和排泄)和毒性分析,以评估其药代动力学特性和安全性。通过分子动力学(MD)模拟评价Granatin B与靶点的稳定性。最后,利用密度泛函理论(DFT)分析Granatin B的电子特性和反应性。结果:Granatin B在11种植物化学物质中表现出最高的结合亲和力,表明其作为MDR大肠杆菌抑制剂具有很强的潜力。ADME分析显示Granatin B具有良好的药代动力学特性,毒性分析证实Granatin B无毒。MD模拟显示Granatin B与所有四个靶标之间存在稳定的相互作用。DFT分析揭示了Granatin B的电子性质和活性位点,支持了其潜在的作用机制。结论:石榴叶Granatin B是治疗耐多药大肠杆菌感染的有希望的候选药物。分子对接,ADME,毒性,MD模拟和DFT分析的整合强调了其治疗潜力,并为进一步实验验证和开发新型抗菌剂铺平了道路。
{"title":"Computational Evaluation of Punica granatum Leaf Phytochemicals against Multi-drug Resistant E. coli: Molecular Docking, ADMET, MD Simulation, and DFT Studies.","authors":"Shivam Mishra, Shristi Modanwal, Prabhat Kumar, Ashutosh Mishra, Nidhi Mishra","doi":"10.2174/0115734099343126241105102839","DOIUrl":"https://doi.org/10.2174/0115734099343126241105102839","url":null,"abstract":"<p><strong>Introduction: </strong>Multidrug-resistant (MDR) E. coli presents a significant challenge in clinical settings, necessitating the exploration of novel therapeutic agents. Phytochemicals from Punica granatum (pomegranate) leaves have shown potential antibacterial properties. This study aims to identify and evaluate the efficacy of these phytochemicals against MDR E. coli.</p><p><strong>Objectives: </strong>This study aims to identify and evaluate the efficacy of most potential phytochemical of Punica granatum leaf against MDR E. coli. through molecular docking, adme, toxicity, molecular dynamic simulation, MMPBSA and DFT approaches.</p><p><strong>Methods: </strong>We performed molecular docking of 11 phytochemicals from the IMPPAT database with four MDR E. coli targets: 1AJ6, 1FJ8, 4BJP, and 6BU3. Granatin B demonstrated the best binding affinity and was further analyzed. ADME (Absorption, Distribution, Metabolism, and Excretion) and toxicity analyses were conducted to assess its pharmacokinetic properties and safety profile. Molecular Dynamics (MD) simulations were performed to evaluate the stability of Granatin B with the targets. Finally, density functional theory (DFT) analysis was carried out to understand the electronic properties and reactivity of Granatin B.</p><p><strong>Results: </strong>Granatin B exhibited the highest binding affinity among the 11 phytochemicals, indicating strong potential as an inhibitor of MDR E. coli. ADME analysis revealed favorable pharmacokinetic properties and toxicity analysis confirmed that Granatin B is non-toxic. MD simulations showed stable interactions between Granatin B and all four targets. DFT analysis provided insights into the electronic properties and reactive sites of Granatin B, supporting its potential mechanism of action.</p><p><strong>Conclusion: </strong>Granatin B from Punica granatum leaves is a promising candidate for treating MDR E. coli infections. The integration of molecular docking, ADME, toxicity, MD simulations, and DFT analysis underscores its therapeutic potential and paves the way for further experimental validation and development as a novel antibacterial agent.</p>","PeriodicalId":93961,"journal":{"name":"Current computer-aided drug design","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142980945","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identification of a ceRNA Network Regulating Malignant Transformation of Isocitrate Dehydrogenase Mutant Astrocytoma: An Integrated Bioinformatics Study. 调控异柠檬酸脱氢酶突变星形细胞瘤恶性转化的ceRNA网络的鉴定:一项综合生物信息学研究。
Pub Date : 2025-01-06 DOI: 10.2174/0115734099293010240810181446
Yaqian Cui, Hongquan Zheng, Zhengwei Zhou, Suo Liu, Mingxue Shen, Runze Qiu, Xiong Zhang, Yingbin Li, Hongwei Fan

Introduction: Astrocytoma is the most common glioma, accounting for about 65% of glioblastoma. Its malignant transformation is also one of the important causes of patient mortality, making it the most prevalent and difficult to treat in primary brain tumours. However, little is known about the underlying mechanisms of this transformation.

Methods: In this study, we established a ceRNA network to screen out the potential regulatory pathways involved in the malignant transformation of IDH-mutant astrocytomas. Firstly, the Chinese Glioma Genome Atlas (CGGA) was employed to compare the expression levels of the differential expressed genes (DEGs) in astrocytomas. Then, the ceRNA-regulated network was constructed based on the interaction of lncRNA-miRNA-mRNA. The Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) were used to explore the main functions of the differentially expressed genes. COX regression analysis and log-rank test were combined to screen the ceRNA network further. In addition, quantitative real-time PCR (qRT-PCR) was conducted to identify the potential regulatory mechanisms of malignant transformation in IDH-mutant astrocytoma. We constructed a ceRNA network with 34 lncRNAs, 29 miRNAs, and 71 mRNAs.

Results: GO and KEGG analyses results suggested that DEGs were associated with tumor-associated molecular functions and pathways. In addition, we screened two ceRNA regulatory networks using Cox regression analysis and log-rank test. QRT-PCR assay identified the NAA11/hsa- miR-142-3p/GS1-39E22.2 regulatory axis of the ceRNA network to be associated with the malignant transformation of IDH-mutant astrocytoma.

Conclusion: The discovery of this mechanism deepens our understanding of the molecular mechanisms of malignant transformation in astrocytomas and provides new perspectives for exploring glioma progression and targeted therapies.

星形细胞瘤是最常见的胶质瘤,约占胶质母细胞瘤的65%。它的恶性转化也是患者死亡的重要原因之一,使其成为原发性脑肿瘤中最普遍和最难治疗的肿瘤。然而,人们对这种转变的潜在机制知之甚少。方法:在本研究中,我们建立了ceRNA网络,筛选idh突变星形细胞瘤恶性转化的潜在调控途径。首先,采用中国胶质瘤基因组图谱(CGGA)比较星形细胞瘤中差异表达基因(DEGs)的表达水平。然后,构建基于lncRNA-miRNA-mRNA相互作用的cerna调控网络。使用基因本体(GO)和京都基因与基因组百科全书(KEGG)来探索差异表达基因的主要功能。结合COX回归分析和log-rank检验进一步筛选ceRNA网络。此外,我们还利用实时荧光定量PCR (qRT-PCR)技术鉴定idh突变型星形细胞瘤恶性转化的潜在调控机制。我们构建了一个包含34个lncrna, 29个mirna和71个mrna的ceRNA网络。结果:GO和KEGG分析结果表明,DEGs与肿瘤相关的分子功能和途径有关。此外,我们使用Cox回归分析和log-rank检验筛选了两个ceRNA调控网络。QRT-PCR检测发现,ceRNA网络的NAA11/hsa- miR-142-3p/GS1-39E22.2调控轴与idh突变型星形细胞瘤的恶性转化有关。结论:该机制的发现加深了我们对星形细胞瘤恶性转化分子机制的认识,为探索胶质瘤的进展和靶向治疗提供了新的视角。
{"title":"Identification of a ceRNA Network Regulating Malignant Transformation of Isocitrate Dehydrogenase Mutant Astrocytoma: An Integrated Bioinformatics Study.","authors":"Yaqian Cui, Hongquan Zheng, Zhengwei Zhou, Suo Liu, Mingxue Shen, Runze Qiu, Xiong Zhang, Yingbin Li, Hongwei Fan","doi":"10.2174/0115734099293010240810181446","DOIUrl":"https://doi.org/10.2174/0115734099293010240810181446","url":null,"abstract":"<p><strong>Introduction: </strong>Astrocytoma is the most common glioma, accounting for about 65% of glioblastoma. Its malignant transformation is also one of the important causes of patient mortality, making it the most prevalent and difficult to treat in primary brain tumours. However, little is known about the underlying mechanisms of this transformation.</p><p><strong>Methods: </strong>In this study, we established a ceRNA network to screen out the potential regulatory pathways involved in the malignant transformation of IDH-mutant astrocytomas. Firstly, the Chinese Glioma Genome Atlas (CGGA) was employed to compare the expression levels of the differential expressed genes (DEGs) in astrocytomas. Then, the ceRNA-regulated network was constructed based on the interaction of lncRNA-miRNA-mRNA. The Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) were used to explore the main functions of the differentially expressed genes. COX regression analysis and log-rank test were combined to screen the ceRNA network further. In addition, quantitative real-time PCR (qRT-PCR) was conducted to identify the potential regulatory mechanisms of malignant transformation in IDH-mutant astrocytoma. We constructed a ceRNA network with 34 lncRNAs, 29 miRNAs, and 71 mRNAs.</p><p><strong>Results: </strong>GO and KEGG analyses results suggested that DEGs were associated with tumor-associated molecular functions and pathways. In addition, we screened two ceRNA regulatory networks using Cox regression analysis and log-rank test. QRT-PCR assay identified the NAA11/hsa- miR-142-3p/GS1-39E22.2 regulatory axis of the ceRNA network to be associated with the malignant transformation of IDH-mutant astrocytoma.</p><p><strong>Conclusion: </strong>The discovery of this mechanism deepens our understanding of the molecular mechanisms of malignant transformation in astrocytomas and provides new perspectives for exploring glioma progression and targeted therapies.</p>","PeriodicalId":93961,"journal":{"name":"Current computer-aided drug design","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142960685","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Targeting PD-1 in Squamous Cell Carcinoma: Flavonoid-based Therapeutics Unveiled through in silico and in vitro Approaches. 在鳞状细胞癌中靶向PD-1:通过计算机和体外方法揭示的基于类黄酮的治疗方法。
Pub Date : 2025-01-06 DOI: 10.2174/0115734099312638240830060525
Neha Sharma, Rupa Mazumder, Pallavi Rai, Abhijit Debnath

Introduction: Squamous cell carcinoma is a major public health concern, with traditional treatments such as surgery, chemotherapy, and radiation therapy frequently resulting in significant side effects. Immunotherapy targeting checkpoints such as PD-1, CTLA-4, and B7- H3 provides a more specific approach but incurs high costs due to monoclonal antibodies.

Aim and objective: This study aims to investigate the potential of natural flavonoids as lowtoxicity, small molecule-based alternatives targeting the PD-1 immunological checkpoint for SCC treatment. It aims to identify and evaluate flavonoid compounds from the NPACT database for their efficacy through in silico and in vitro screenings.

Method: Employing a comprehensive in silico approach, including SBVS, Drug Likeness, Toxicity Prediction, Consensus Molecular Docking, DFT, and 300 ns MD simulations, this study screened for flavonoids with high affinity to PD-1. Identified lead molecules were further validated through in-vitro assays, such as NRU, to assess their anticancer activities.

Result: The flavonoid NPACT01407 showed high affinity for PD-1, favorable drug-like properties, low toxicity, and effective stability at the active site, along with an optimal IC50 value, highlighting its potential as an effective immunotherapeutic agent for SCC.

Conclusion: The study highlights the potential of the flavonoid molecule NPACT01407 as a promising candidate for the immunotherapeutic treatment of Squamous cell carcinoma. These findings provide a solid basis for further experimental validation and drug development efforts, suggesting a novel, less toxic, and cost-effective approach to cancer treatment.

简介:鳞状细胞癌是一个主要的公共卫生问题,传统的治疗方法,如手术、化疗和放疗,往往导致显著的副作用。针对PD-1、CTLA-4和B7- H3等检查点的免疫治疗提供了一种更具体的方法,但由于单克隆抗体的存在,成本很高。目的与目的:本研究旨在探讨天然黄酮类化合物作为低毒性、小分子靶向PD-1免疫检查点治疗鳞状细胞癌的潜力。目的是通过体外筛选和计算机筛选,鉴定和评价NPACT数据库中黄酮类化合物的功效。方法:采用SBVS、药物相似性、毒性预测、共识分子对接、DFT和300 ns MD模拟等综合方法,筛选与PD-1高亲和力的类黄酮。鉴定出的铅分子通过体外实验(如NRU)进一步验证,以评估其抗癌活性。结果:类黄酮NPACT01407对PD-1具有高亲和力、良好的药物性质、低毒性和活性位点的有效稳定性,且具有最佳的IC50值,显示了其作为SCC有效免疫治疗剂的潜力。结论:提示类黄酮分子NPACT01407作为鳞状细胞癌免疫治疗的潜在候选分子。这些发现为进一步的实验验证和药物开发工作提供了坚实的基础,提出了一种新的、毒性更小、成本效益更高的癌症治疗方法。
{"title":"Targeting PD-1 in Squamous Cell Carcinoma: Flavonoid-based Therapeutics Unveiled through in silico and in vitro Approaches.","authors":"Neha Sharma, Rupa Mazumder, Pallavi Rai, Abhijit Debnath","doi":"10.2174/0115734099312638240830060525","DOIUrl":"https://doi.org/10.2174/0115734099312638240830060525","url":null,"abstract":"<p><strong>Introduction: </strong>Squamous cell carcinoma is a major public health concern, with traditional treatments such as surgery, chemotherapy, and radiation therapy frequently resulting in significant side effects. Immunotherapy targeting checkpoints such as PD-1, CTLA-4, and B7- H3 provides a more specific approach but incurs high costs due to monoclonal antibodies.</p><p><strong>Aim and objective: </strong>This study aims to investigate the potential of natural flavonoids as lowtoxicity, small molecule-based alternatives targeting the PD-1 immunological checkpoint for SCC treatment. It aims to identify and evaluate flavonoid compounds from the NPACT database for their efficacy through in silico and in vitro screenings.</p><p><strong>Method: </strong>Employing a comprehensive in silico approach, including SBVS, Drug Likeness, Toxicity Prediction, Consensus Molecular Docking, DFT, and 300 ns MD simulations, this study screened for flavonoids with high affinity to PD-1. Identified lead molecules were further validated through in-vitro assays, such as NRU, to assess their anticancer activities.</p><p><strong>Result: </strong>The flavonoid NPACT01407 showed high affinity for PD-1, favorable drug-like properties, low toxicity, and effective stability at the active site, along with an optimal IC50 value, highlighting its potential as an effective immunotherapeutic agent for SCC.</p><p><strong>Conclusion: </strong>The study highlights the potential of the flavonoid molecule NPACT01407 as a promising candidate for the immunotherapeutic treatment of Squamous cell carcinoma. These findings provide a solid basis for further experimental validation and drug development efforts, suggesting a novel, less toxic, and cost-effective approach to cancer treatment.</p>","PeriodicalId":93961,"journal":{"name":"Current computer-aided drug design","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142960686","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring the Mechanisms of Sanguinarine in the Treatment of Osteoporosis by Integrating Network Pharmacology Analysis and Deep Learning Technology. 通过整合网络药理学分析和深度学习技术,探索桑吉那林治疗骨质疏松症的机制。
Pub Date : 2025-01-01 DOI: 10.2174/0115734099282231240214095025
Yonghong Tang, Daoqing Zhou, Fengping Gan, Zhicheng Yao, Yuqing Zeng

Background: Sanguinarine (SAN) has been reported to have antioxidant, antiinflammatory, and antimicrobial activities with potential for the treatment of osteoporosis (OP).

Objective: This work purposed to unravel the molecular mechanisms of SAN in the treatment of OP.

Methods: OP-related genes and SAN-related targets were predicted from public databases. Differential expression analysis and VennDiagram were adopted to detect SAN-related targets against OP. Protein-protein interaction (PPI) network was served for core target identification. Molecular docking and DeepPurpose algorithm were further adopted to investigate the binding ability between core targets and SAN. Gene pathway scoring of these targets was calculated utilizing gene set variation analysis (GSVA). Finally, we explored the effect of SAN on the expressions of core targets in preosteoblastic MC3T3-E1 cells.

Results: A total of 21 candidate targets of SAN against OP were acquired. Furthermore, six core targets were identified, among which CASP3, CTNNB1, and ERBB2 were remarkably differentially expressed in OP and healthy individuals. The binding energies of SAN with CASP3, CTNNB1, and ERBB2 were -6, -6.731, and -7.162 kcal/mol, respectively. Moreover, the GSVA scores of the Wnt/calcium signaling pathway were significantly lower in OP cases than in healthy individuals. In addition, the expression of CASP3 was positively associated with Wnt/calcium signaling pathway. CASP3 and ERBB2 were significantly lower expressed in SAN group than in DMSO group, whereas the expression of CTNNB1 was in contrast.

Conclusion: CASP3, CTNNB1, and ERBB2 emerge as potential targets of SAN in OP prevention and treatment.

背景:据报道,番木瓜碱(SAN)具有抗氧化、抗炎和抗菌活性,具有治疗骨质疏松症(OP)的潜力:本研究旨在揭示 SAN 治疗 OP 的分子机制:方法:从公共数据库中预测 OP 相关基因和 SAN 相关靶点。方法:从公共数据库中预测 OP 相关基因和 SAN 相关靶点,采用差异表达分析和 VennDiagram 方法检测 SAN 相关靶点对 OP 的作用。蛋白质-蛋白质相互作用(PPI)网络用于核心靶点的鉴定。进一步采用分子对接和 DeepPurpose 算法研究核心靶点与 SAN 的结合能力。利用基因组变异分析(GSVA)计算了这些靶点的基因通路得分。最后,我们探讨了SAN对前成骨细胞MC3T3-E1中核心靶点表达的影响:结果:共获得了 21 个 SAN 对抗 OP 的候选靶点。结果:共获得 21 个 SAN 抗 OP 的候选靶点,并确定了 6 个核心靶点,其中 CASP3、CTNNB1 和 ERBB2 在 OP 和健康人中的表达存在显著差异。SAN与CASP3、CTNNB1和ERBB2的结合能分别为-6、-6.731和-7.162 kcal/mol。此外,OP 病例中 Wnt/钙信号通路的 GSVA 评分明显低于健康人。此外,CASP3的表达与Wnt/钙信号通路呈正相关。CASP3和ERBB2在SAN组的表达明显低于DMSO组,而CTNNB1的表达则相反:结论:CASP3、CTNNB1 和 ERBB2 是 SAN 在 OP 预防和治疗中的潜在靶点。
{"title":"Exploring the Mechanisms of Sanguinarine in the Treatment of Osteoporosis by Integrating Network Pharmacology Analysis and Deep Learning Technology.","authors":"Yonghong Tang, Daoqing Zhou, Fengping Gan, Zhicheng Yao, Yuqing Zeng","doi":"10.2174/0115734099282231240214095025","DOIUrl":"10.2174/0115734099282231240214095025","url":null,"abstract":"<p><strong>Background: </strong>Sanguinarine (SAN) has been reported to have antioxidant, antiinflammatory, and antimicrobial activities with potential for the treatment of osteoporosis (OP).</p><p><strong>Objective: </strong>This work purposed to unravel the molecular mechanisms of SAN in the treatment of OP.</p><p><strong>Methods: </strong>OP-related genes and SAN-related targets were predicted from public databases. Differential expression analysis and VennDiagram were adopted to detect SAN-related targets against OP. Protein-protein interaction (PPI) network was served for core target identification. Molecular docking and DeepPurpose algorithm were further adopted to investigate the binding ability between core targets and SAN. Gene pathway scoring of these targets was calculated utilizing gene set variation analysis (GSVA). Finally, we explored the effect of SAN on the expressions of core targets in preosteoblastic MC3T3-E1 cells.</p><p><strong>Results: </strong>A total of 21 candidate targets of SAN against OP were acquired. Furthermore, six core targets were identified, among which CASP3, CTNNB1, and ERBB2 were remarkably differentially expressed in OP and healthy individuals. The binding energies of SAN with CASP3, CTNNB1, and ERBB2 were -6, -6.731, and -7.162 kcal/mol, respectively. Moreover, the GSVA scores of the Wnt/calcium signaling pathway were significantly lower in OP cases than in healthy individuals. In addition, the expression of CASP3 was positively associated with Wnt/calcium signaling pathway. CASP3 and ERBB2 were significantly lower expressed in SAN group than in DMSO group, whereas the expression of CTNNB1 was in contrast.</p><p><strong>Conclusion: </strong>CASP3, CTNNB1, and ERBB2 emerge as potential targets of SAN in OP prevention and treatment.</p>","PeriodicalId":93961,"journal":{"name":"Current computer-aided drug design","volume":" ","pages":"83-93"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11774308/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139934750","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanisms Underlying the Attenuating Effects of Bugantang on Liver Fibrosis based on Network Pharmacology, Molecular Docking, and Molecular Dynamics Simulation. 基于网络药理学、分子对接、分子动力学模拟的补肝汤抗肝纤维化机制研究
Pub Date : 2024-12-02 DOI: 10.2174/0115734099335133241030110644
Taojing Zhang, Jia Chang, Zengle Zheng, Guobi Chen, Yiping Wu, Jinxiang Xiang, Jing Chen

Background: Liver fibrosis, a chronic liver disease, threatens people's health, increases the burden of healthcare, and currently lacks effective treatment measures. Bugantang (BGT) is a traditional Chinese herbal prescription from Jin Kui Yi with promising potential for treating liver fibrosis. Despite this potential, the efficacy and mechanism for treating liver fibrosis remain unclear.

Objective: To primarily prove the efficacy, predict the active components of BGT, and explore the mechanism of BGT on liver fibrosis.

Methods: The liver condition of CCL4-induced mice was examined using hematoxylin and eosin staining. The targets and active compounds of BGT were sourced from HERB and TCMSP databases, while the targets related to liver fibrosis were acquired from DisGeNET, Gene Expression Omnibus, and GeneCards databases. The core targets were identified, and the network of protein-protein interactions was established. KEGG and GO analyses were performed on DAVID. Molecular docking and molecular dynamics simulations assessed the active components' interactions with potential targets.

Results: A total of 215 targets and 152 active compounds were identified for BGT. The network analysis identified kaempferol, quercetin, 2-(2,4-dihydroxyphenyl)-7-hydroxy-4Hchromen- 4-one, sitosterol, naringenin, adenosine, plo, and beta-sitosterol as potential key compounds, and AKT1, MMP9, SRC, TNF, ESR1, NF-κB, and PPARG as potential key targets. KEGG and GO analyses revealed that the therapeutic effect of BGT on liver fibrosis may be associated with the PI3K-AKT and MAPK signaling pathways, as well as cell apoptosis, protein phosphorylation, and inflammation. Molecular docking demonstrated high-affinity binding of the identified targets to the active compounds. Additionally, molecular dynamics simulation further confirmed that the bindings of AKT1-beta-sitosterol and MMP9-quercetin exhibited good stability.

Conclusions: The potential of BGT in alleviating liver fibrosis may be attributed to a combination of various active compounds, targets, and pathways. These results could support the use of BGT in treating liver fibrosis and facilitate the development of new drug candidates for this condition.

背景:肝纤维化是一种慢性肝病,威胁着人们的健康,增加了医疗负担,目前缺乏有效的治疗措施。补肝汤是一种来自金葵义的传统中药,具有治疗肝纤维化的潜力。尽管有这种潜力,但治疗肝纤维化的疗效和机制尚不清楚。目的:初步证明白骨精的疗效,预测其有效成分,探讨白骨精治疗肝纤维化的作用机制。方法:采用苏木精和伊红染色法观察ccl4诱导小鼠的肝脏状况。BGT的靶点和活性化合物来源于HERB和TCMSP数据库,与肝纤维化相关的靶点来源于DisGeNET、Gene Expression Omnibus和GeneCards数据库。鉴定核心靶点,建立蛋白-蛋白相互作用网络。对DAVID进行KEGG和GO分析。分子对接和分子动力学模拟评估了活性成分与潜在靶标的相互作用。结果:共鉴定出BGT的215个靶点和152个活性化合物。网络分析发现山奈酚、槲皮素、2-(2,4-二羟基苯基)-7-羟基- 4hchromen - 4-one、谷甾醇、柚皮素、腺苷、plo和β -谷甾醇是潜在的关键化合物,AKT1、MMP9、SRC、TNF、ESR1、NF-κ b和PPARG是潜在的关键靶点。KEGG和GO分析显示,BGT对肝纤维化的治疗作用可能与PI3K-AKT和MAPK信号通路以及细胞凋亡、蛋白磷酸化和炎症有关。分子对接表明,鉴定的靶点与活性化合物具有高亲和力结合。此外,分子动力学模拟进一步证实了akt1 - β -谷甾醇与mmp9 -槲皮素的结合具有良好的稳定性。结论:BGT减轻肝纤维化的潜力可能归因于各种活性化合物、靶点和途径的结合。这些结果可以支持BGT在治疗肝纤维化中的应用,并促进这种疾病的新候选药物的开发。
{"title":"Mechanisms Underlying the Attenuating Effects of Bugantang on Liver Fibrosis based on Network Pharmacology, Molecular Docking, and Molecular Dynamics Simulation.","authors":"Taojing Zhang, Jia Chang, Zengle Zheng, Guobi Chen, Yiping Wu, Jinxiang Xiang, Jing Chen","doi":"10.2174/0115734099335133241030110644","DOIUrl":"https://doi.org/10.2174/0115734099335133241030110644","url":null,"abstract":"<p><strong>Background: </strong>Liver fibrosis, a chronic liver disease, threatens people's health, increases the burden of healthcare, and currently lacks effective treatment measures. Bugantang (BGT) is a traditional Chinese herbal prescription from Jin Kui Yi with promising potential for treating liver fibrosis. Despite this potential, the efficacy and mechanism for treating liver fibrosis remain unclear.</p><p><strong>Objective: </strong>To primarily prove the efficacy, predict the active components of BGT, and explore the mechanism of BGT on liver fibrosis.</p><p><strong>Methods: </strong>The liver condition of CCL4-induced mice was examined using hematoxylin and eosin staining. The targets and active compounds of BGT were sourced from HERB and TCMSP databases, while the targets related to liver fibrosis were acquired from DisGeNET, Gene Expression Omnibus, and GeneCards databases. The core targets were identified, and the network of protein-protein interactions was established. KEGG and GO analyses were performed on DAVID. Molecular docking and molecular dynamics simulations assessed the active components' interactions with potential targets.</p><p><strong>Results: </strong>A total of 215 targets and 152 active compounds were identified for BGT. The network analysis identified kaempferol, quercetin, 2-(2,4-dihydroxyphenyl)-7-hydroxy-4Hchromen- 4-one, sitosterol, naringenin, adenosine, plo, and beta-sitosterol as potential key compounds, and AKT1, MMP9, SRC, TNF, ESR1, NF-κB, and PPARG as potential key targets. KEGG and GO analyses revealed that the therapeutic effect of BGT on liver fibrosis may be associated with the PI3K-AKT and MAPK signaling pathways, as well as cell apoptosis, protein phosphorylation, and inflammation. Molecular docking demonstrated high-affinity binding of the identified targets to the active compounds. Additionally, molecular dynamics simulation further confirmed that the bindings of AKT1-beta-sitosterol and MMP9-quercetin exhibited good stability.</p><p><strong>Conclusions: </strong>The potential of BGT in alleviating liver fibrosis may be attributed to a combination of various active compounds, targets, and pathways. These results could support the use of BGT in treating liver fibrosis and facilitate the development of new drug candidates for this condition.</p>","PeriodicalId":93961,"journal":{"name":"Current computer-aided drug design","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142775796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Network Pharmacology and In Vivo Experimental Verification of the Mechanism of the Qing'e Pill for Treating Intervertebral Disc Degeneration. 清娥丸治疗椎间盘退变机制的网络药理学及体内实验验证。
Pub Date : 2024-12-02 DOI: 10.2174/0115734099356426241119051916
Hui Jin, Huaiyu Ma, Jie Wu, Ruizhe Wu, Haoran Xu, Weixing Chen, Linghui Li, Jingqi Zeng, Fan Wang

Objective: The Qing'e Pill (QEP) is widely used to alleviate low back pain and sciatica caused by Intervertebral Disc Degeneration (IDD). However, its active components, key targets, and molecular mechanisms are not fully understood. The aim of this study is to elucidate the molecular mechanisms through which the QEP improves IDD using database mining techniques.

Methods: Active components and candidate targets of the QEP were identified using the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform and the Bioinformatics Analysis Tool for Molecular Mechanisms of Traditional Chinese Medicine. IDD-related targets were obtained from the GeneCards database, and liver- and kidney-specific genes were retrieved from the BioGPS database. The intersection of these candidate targets was analyzed to identify potential targets for the QEP in IDD. A protein-protein interaction network analysis was performed using STRING and Cytoscape 3.7.2 software. Core targets were further analyzed through Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. Molecular docking was used to assess the binding affinity of active components to candidate targets, and animal experiments were conducted for validation.

Results: We identified 65 potentially active components of the QEP that corresponded to 1,093 candidate targets, 2,108 IDD-related targets, and 1,113 liver- and kidney-specific genes. Key components included quercetin, berberine, isorhamnetin, and emodin. The primary candidate targets were Wnt5A, CTNNB1, IL-1β, MAPK14, MMP9, and MMP3. The GO and KEGG analyses revealed the involvement of these targets in Wnt signaling, TNF signaling, Wnt receptor activation, Frizzled binding, and Wnt-protein interactions. Molecular docking showed strong binding between these components and their targets. Animal experiments demonstrated that the QEP treatment significantly reduced the expression of Wnt5A, CTNNB1, IL-1β, MAPK14, MMP9, and MMP3 at high, medium, and low doses compared with the model group.

Conclusion: The QEP alleviated IDD by modulating the Wnt/MAPK/MMP signaling pathways and reducing the release and activation of key factors.

目的:清娥丸(QEP)被广泛用于缓解腰椎间盘退变(IDD)引起的腰痛和坐骨神经痛。然而,其活性成分、关键靶点和分子机制尚不完全清楚。本研究的目的是利用数据库挖掘技术阐明QEP改善IDD的分子机制。方法:利用中药系统药理学数据库分析平台和中药分子机制生物信息学分析工具,对QEP的有效成分和候选靶点进行鉴定。从GeneCards数据库中获得idd相关靶点,从BioGPS数据库中检索肝脏和肾脏特异性基因。分析了这些候选靶点的交集,以确定IDD中QEP的潜在靶点。使用STRING和Cytoscape 3.7.2软件进行蛋白相互作用网络分析。通过基因本体(GO)和京都基因与基因组百科全书(KEGG)富集分析进一步分析核心靶点。通过分子对接评估活性成分与候选靶点的结合亲和力,并进行动物实验验证。结果:我们确定了65个QEP的潜在活性成分,对应于1,093个候选靶点,2,108个idd相关靶点和1,113个肝脏和肾脏特异性基因。主要成分包括槲皮素、小檗碱、异鼠李素和大黄素。主要候选靶点为Wnt5A、CTNNB1、IL-1β、MAPK14、MMP9和MMP3。GO和KEGG分析揭示了这些靶点参与Wnt信号、TNF信号、Wnt受体激活、卷曲结合和Wnt-蛋白相互作用。分子对接显示了这些成分与靶标之间的强结合。动物实验表明,与模型组比较,QEP高、中、低剂量处理均显著降低Wnt5A、CTNNB1、IL-1β、MAPK14、MMP9、MMP3的表达。结论:QEP通过调节Wnt/MAPK/MMP信号通路,减少关键因子的释放和激活,减轻IDD。
{"title":"Network Pharmacology and In Vivo Experimental Verification of the Mechanism of the Qing'e Pill for Treating Intervertebral Disc Degeneration.","authors":"Hui Jin, Huaiyu Ma, Jie Wu, Ruizhe Wu, Haoran Xu, Weixing Chen, Linghui Li, Jingqi Zeng, Fan Wang","doi":"10.2174/0115734099356426241119051916","DOIUrl":"https://doi.org/10.2174/0115734099356426241119051916","url":null,"abstract":"<p><strong>Objective: </strong>The Qing'e Pill (QEP) is widely used to alleviate low back pain and sciatica caused by Intervertebral Disc Degeneration (IDD). However, its active components, key targets, and molecular mechanisms are not fully understood. The aim of this study is to elucidate the molecular mechanisms through which the QEP improves IDD using database mining techniques.</p><p><strong>Methods: </strong>Active components and candidate targets of the QEP were identified using the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform and the Bioinformatics Analysis Tool for Molecular Mechanisms of Traditional Chinese Medicine. IDD-related targets were obtained from the GeneCards database, and liver- and kidney-specific genes were retrieved from the BioGPS database. The intersection of these candidate targets was analyzed to identify potential targets for the QEP in IDD. A protein-protein interaction network analysis was performed using STRING and Cytoscape 3.7.2 software. Core targets were further analyzed through Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. Molecular docking was used to assess the binding affinity of active components to candidate targets, and animal experiments were conducted for validation.</p><p><strong>Results: </strong>We identified 65 potentially active components of the QEP that corresponded to 1,093 candidate targets, 2,108 IDD-related targets, and 1,113 liver- and kidney-specific genes. Key components included quercetin, berberine, isorhamnetin, and emodin. The primary candidate targets were Wnt5A, CTNNB1, IL-1β, MAPK14, MMP9, and MMP3. The GO and KEGG analyses revealed the involvement of these targets in Wnt signaling, TNF signaling, Wnt receptor activation, Frizzled binding, and Wnt-protein interactions. Molecular docking showed strong binding between these components and their targets. Animal experiments demonstrated that the QEP treatment significantly reduced the expression of Wnt5A, CTNNB1, IL-1β, MAPK14, MMP9, and MMP3 at high, medium, and low doses compared with the model group.</p><p><strong>Conclusion: </strong>The QEP alleviated IDD by modulating the Wnt/MAPK/MMP signaling pathways and reducing the release and activation of key factors.</p>","PeriodicalId":93961,"journal":{"name":"Current computer-aided drug design","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142775850","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Xuebijing Exerts Protective Effects on Myocardial Cells by Upregulating TRIM16 and Inhibiting Oxidative Stress and Apoptosis. 血必净通过上调TRIM16抑制氧化应激和细胞凋亡对心肌细胞具有保护作用。
Pub Date : 2024-12-02 DOI: 10.2174/0115734099318323241122184120
Xiaoyan Meng, Xinming Yan, Peng Xue, Zhaoqing Xi

Objective: This study utilized transcriptomic sequencing combined with cellular and animal models to explore the potential mechanisms of Xuebijing in treating sepsis-induced myocardial dysfunction, also known as sepsis-induced myocardial injury.

Methods: We investigated potential targets and regulatory mechanisms of XBJ injection using network pharmacology and RNA sequencing. The effects of XBJ on oxidative stress and apoptosis levels in human cardiac myocytes (AC16) and C57BL/6 mice exposed to lipopolysaccharide (LPS) were evaluated by Enzyme-Linked Immunosorbent Assay (ELISA), fluorescent probe, Fluorescent Quantitative Polymerase Chain Reaction (qPCR), Western Blot, Transmission Electron Microscopy, oxidative stress-related indicators detection kit, flow cytometry, and Immunohistochemistry (IHC).

Results: First, it was verified that XBJ can reduce the deformation of AC16 cardiomyocytes induced by LPS and the production and secretion of ROS (P <0.01). The transcriptome sequencing results showed that the TRIM16 gene was significantly increased after XBJ treatment, and the data of KEGG and GO analyses demonstrated that XBJ could inhibit the pathway expression of oxidative stress damage in AC16 cells, and PCR verified that XBJ could indeed increase the expression level of TRIM16 gene in AC16 cells (P <0.01). Basic animal and cell experiments showed that LPS could inhibit the expression of TRIM16 and NRF2 in cardiomyocytes (P <0.05) and promote the expression of Keap1 (P <0.01), while XBJ could significantly upregulate the expression levels of TRIM16 and NRF2 (P <0.01) and inhibit the expression of Keap1 (P <0.01), thereby affecting the expression levels of downstream proinflammatory cytokines and alleviating LPS-induced oxidative stress damage. In addition, XBJ also inhibited the expression of the pro-apoptotic proteins Bax and c-caspase3 (P <0.01), promoted the expression of the anti-apoptotic protein Bcl2 (P <0.01), and reduced LPS-induced apoptosis by upregulating TRIM16.

Conclusion: Our comprehensive data demonstrated that TRIM16 is a key gene in the therapeutic action of Xuebijing in sepsis-induced myocardial dysfunction, protecting myocardial cells from injury through antioxidative stress and anti-apoptotic mechanisms.

目的:本研究利用转录组测序结合细胞和动物模型,探讨血必净治疗败血症性心肌功能障碍(也称为败血症性心肌损伤)的潜在机制。方法:利用网络药理学和RNA测序技术,研究XBJ注射液的潜在靶点和调控机制。采用酶联免疫吸附法(ELISA)、荧光探针、荧光定量聚合酶链式反应(qPCR)、Western Blot、透射电镜、氧化应激相关指标检测试剂盒、流式细胞术、免疫组化(IHC)等方法观察XBJ对脂多糖(LPS)作用下人心肌细胞(AC16)和C57BL/6小鼠氧化应激和凋亡水平的影响。结果:首先,证实XBJ可减少LPS诱导的AC16心肌细胞变形及ROS的产生和分泌(P)。结论:我们的综合数据表明,TRIM16是血必净治疗败血症所致心肌功能障碍的关键基因,通过抗氧化应激和抗凋亡机制保护心肌细胞免受损伤。
{"title":"Xuebijing Exerts Protective Effects on Myocardial Cells by Upregulating TRIM16 and Inhibiting Oxidative Stress and Apoptosis.","authors":"Xiaoyan Meng, Xinming Yan, Peng Xue, Zhaoqing Xi","doi":"10.2174/0115734099318323241122184120","DOIUrl":"https://doi.org/10.2174/0115734099318323241122184120","url":null,"abstract":"<p><strong>Objective: </strong>This study utilized transcriptomic sequencing combined with cellular and animal models to explore the potential mechanisms of Xuebijing in treating sepsis-induced myocardial dysfunction, also known as sepsis-induced myocardial injury.</p><p><strong>Methods: </strong>We investigated potential targets and regulatory mechanisms of XBJ injection using network pharmacology and RNA sequencing. The effects of XBJ on oxidative stress and apoptosis levels in human cardiac myocytes (AC16) and C57BL/6 mice exposed to lipopolysaccharide (LPS) were evaluated by Enzyme-Linked Immunosorbent Assay (ELISA), fluorescent probe, Fluorescent Quantitative Polymerase Chain Reaction (qPCR), Western Blot, Transmission Electron Microscopy, oxidative stress-related indicators detection kit, flow cytometry, and Immunohistochemistry (IHC).</p><p><strong>Results: </strong>First, it was verified that XBJ can reduce the deformation of AC16 cardiomyocytes induced by LPS and the production and secretion of ROS (P <0.01). The transcriptome sequencing results showed that the TRIM16 gene was significantly increased after XBJ treatment, and the data of KEGG and GO analyses demonstrated that XBJ could inhibit the pathway expression of oxidative stress damage in AC16 cells, and PCR verified that XBJ could indeed increase the expression level of TRIM16 gene in AC16 cells (P <0.01). Basic animal and cell experiments showed that LPS could inhibit the expression of TRIM16 and NRF2 in cardiomyocytes (P <0.05) and promote the expression of Keap1 (P <0.01), while XBJ could significantly upregulate the expression levels of TRIM16 and NRF2 (P <0.01) and inhibit the expression of Keap1 (P <0.01), thereby affecting the expression levels of downstream proinflammatory cytokines and alleviating LPS-induced oxidative stress damage. In addition, XBJ also inhibited the expression of the pro-apoptotic proteins Bax and c-caspase3 (P <0.01), promoted the expression of the anti-apoptotic protein Bcl2 (P <0.01), and reduced LPS-induced apoptosis by upregulating TRIM16.</p><p><strong>Conclusion: </strong>Our comprehensive data demonstrated that TRIM16 is a key gene in the therapeutic action of Xuebijing in sepsis-induced myocardial dysfunction, protecting myocardial cells from injury through antioxidative stress and anti-apoptotic mechanisms.</p>","PeriodicalId":93961,"journal":{"name":"Current computer-aided drug design","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142775853","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Current computer-aided drug design
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1