Touch cannot attentionally select signals based on feature binding.

IF 2.4 3区 计算机科学 Q2 COMPUTER SCIENCE, CYBERNETICS IEEE Transactions on Haptics Pub Date : 2024-02-20 DOI:10.1109/TOH.2024.3367944
Scinob Kuroki, Shinya Nishida
{"title":"Touch cannot attentionally select signals based on feature binding.","authors":"Scinob Kuroki, Shinya Nishida","doi":"10.1109/TOH.2024.3367944","DOIUrl":null,"url":null,"abstract":"<p><p>For human sensory processing, cluttered real-world environments where signals from multiple objects or events overlap are challenging. A cognitive function useful in such situations is an attentional selection of one signal from others based on the difference in bound feature. For instance, one can visually select a specific orientation if it is uniquely colored. However, here we show that unlike vision, touch is very poor at feature-based signal selection. We presented two-orthogonal line segments with different vibration textures to a fingertip. Though observers were markedly sensitive to each feature, they were generally unable to identify the orientation bound with a specific texture when the segments were presented simultaneously or in rapid alternation. A similar failure was observed for a direction judgment task. These results demonstrate a general cognitive limitation of touch, highlighting its unique bias to integrate multiple signals into a global event rather than segment them into separate events.</p>","PeriodicalId":13215,"journal":{"name":"IEEE Transactions on Haptics","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Haptics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/TOH.2024.3367944","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
引用次数: 0

Abstract

For human sensory processing, cluttered real-world environments where signals from multiple objects or events overlap are challenging. A cognitive function useful in such situations is an attentional selection of one signal from others based on the difference in bound feature. For instance, one can visually select a specific orientation if it is uniquely colored. However, here we show that unlike vision, touch is very poor at feature-based signal selection. We presented two-orthogonal line segments with different vibration textures to a fingertip. Though observers were markedly sensitive to each feature, they were generally unable to identify the orientation bound with a specific texture when the segments were presented simultaneously or in rapid alternation. A similar failure was observed for a direction judgment task. These results demonstrate a general cognitive limitation of touch, highlighting its unique bias to integrate multiple signals into a global event rather than segment them into separate events.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
触控无法根据特征绑定来注意选择信号。
对于人类的感官处理来说,在杂乱无章的现实世界环境中,来自多个物体或事件的信号会重叠在一起,这对人类的感官处理是一个挑战。在这种情况下,一种有用的认知功能是根据约束特征的差异,从其他信号中注意选择一个信号。例如,如果一个特定的方位具有独特的颜色,人们就可以通过视觉选择该方位。然而,我们在这里证明,与视觉不同,触觉在基于特征的信号选择方面表现很差。我们向指尖展示了具有不同振动纹理的两条正交线段。虽然观察者对每个特征都非常敏感,但当线段同时或快速交替出现时,他们通常无法识别出与特定纹理绑定的方向。在方向判断任务中也观察到了类似的失败。这些结果表明了触觉在认知上的普遍局限性,凸显了触觉将多个信号整合成一个整体事件而不是将它们分割成单独事件的独特偏向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Haptics
IEEE Transactions on Haptics COMPUTER SCIENCE, CYBERNETICS-
CiteScore
5.90
自引率
13.80%
发文量
109
审稿时长
>12 weeks
期刊介绍: IEEE Transactions on Haptics (ToH) is a scholarly archival journal that addresses the science, technology, and applications associated with information acquisition and object manipulation through touch. Haptic interactions relevant to this journal include all aspects of manual exploration and manipulation of objects by humans, machines and interactions between the two, performed in real, virtual, teleoperated or networked environments. Research areas of relevance to this publication include, but are not limited to, the following topics: Human haptic and multi-sensory perception and action, Aspects of motor control that explicitly pertain to human haptics, Haptic interactions via passive or active tools and machines, Devices that sense, enable, or create haptic interactions locally or at a distance, Haptic rendering and its association with graphic and auditory rendering in virtual reality, Algorithms, controls, and dynamics of haptic devices, users, and interactions between the two, Human-machine performance and safety with haptic feedback, Haptics in the context of human-computer interactions, Systems and networks using haptic devices and interactions, including multi-modal feedback, Application of the above, for example in areas such as education, rehabilitation, medicine, computer-aided design, skills training, computer games, driver controls, simulation, and visualization.
期刊最新文献
Investigating the Kappa Effect Elicited Through Concurrent Visual and Tactile Stimulation. Two rapid alternatives compared to the staircase method for the estimation of the vibrotactile perception threshold. Multichannel Vibrotactile Glove: Validation of a new device designed to sense vibrations. Passive Realizations of Series Elastic Actuation: Effects of Plant and Controller Dynamics on Haptic Rendering Performance. VT-SGN:Spiking Graph Neural Network for Neuromorphic Visual-Tactile Fusion.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1