Assessing Verbal Eyewitness Confidence Statements Using Natural Language Processing.

IF 4.8 1区 心理学 Q1 PSYCHOLOGY, MULTIDISCIPLINARY Psychological Science Pub Date : 2024-03-01 Epub Date: 2024-02-20 DOI:10.1177/09567976241229028
Rachel Leigh Greenspan, Alex Lyman, Paul Heaton
{"title":"Assessing Verbal Eyewitness Confidence Statements Using Natural Language Processing.","authors":"Rachel Leigh Greenspan, Alex Lyman, Paul Heaton","doi":"10.1177/09567976241229028","DOIUrl":null,"url":null,"abstract":"<p><p>After an eyewitness completes a lineup, officers are advised to ask witnesses how confident they are in their identification. Although researchers in the lab typically study eyewitness confidence numerically, confidence in the field is primarily gathered verbally. In the current study, we used a natural language-processing approach to develop an automated model to classify verbal eyewitness confidence statements. Across a variety of stimulus materials and witnessing conditions, our model correctly classified adult witnesses' (<i>N</i> = 4,541) level of confidence (i.e., high, medium, or low) 71% of the time. Confidence-accuracy calibration curves demonstrate that the model's confidence classification performs similarly in predicting eyewitness accuracy compared to witnesses' self-reported numeric confidence. Our model also furnishes a new metric, <i>confidence entropy</i>, that measures the vagueness of witnesses' confidence statements and provides independent information about eyewitness accuracy. These results have implications for how empirical scientists collect confidence data and how police interpret eyewitness confidence statements.</p>","PeriodicalId":20745,"journal":{"name":"Psychological Science","volume":" ","pages":"277-287"},"PeriodicalIF":4.8000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychological Science","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1177/09567976241229028","RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/20 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PSYCHOLOGY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

After an eyewitness completes a lineup, officers are advised to ask witnesses how confident they are in their identification. Although researchers in the lab typically study eyewitness confidence numerically, confidence in the field is primarily gathered verbally. In the current study, we used a natural language-processing approach to develop an automated model to classify verbal eyewitness confidence statements. Across a variety of stimulus materials and witnessing conditions, our model correctly classified adult witnesses' (N = 4,541) level of confidence (i.e., high, medium, or low) 71% of the time. Confidence-accuracy calibration curves demonstrate that the model's confidence classification performs similarly in predicting eyewitness accuracy compared to witnesses' self-reported numeric confidence. Our model also furnishes a new metric, confidence entropy, that measures the vagueness of witnesses' confidence statements and provides independent information about eyewitness accuracy. These results have implications for how empirical scientists collect confidence data and how police interpret eyewitness confidence statements.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用自然语言处理技术评估目击证人的口头证词。
在目击者完成列队后,建议警官询问目击者对其指认有多大信心。虽然实验室的研究人员通常通过数字来研究目击者的信心,但在现场主要是通过口头来收集信心。在本研究中,我们使用自然语言处理方法开发了一个自动模型,用于对目击证人的口头信心陈述进行分类。在各种刺激材料和目击条件下,我们的模型在 71% 的情况下正确地对成年证人(人数 = 4,541 人)的信心水平(即高、中或低)进行了分类。置信度-准确度校准曲线表明,与证人自我报告的数字置信度相比,模型的置信度分类在预测目击者准确度方面表现相似。我们的模型还提供了一个新指标--置信度熵,它可以衡量证人置信度陈述的模糊性,并提供有关目击者准确性的独立信息。这些结果对实证科学家如何收集置信度数据以及警方如何解释目击证人的置信度陈述具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Psychological Science
Psychological Science PSYCHOLOGY, MULTIDISCIPLINARY-
CiteScore
13.30
自引率
0.00%
发文量
156
期刊介绍: Psychological Science, the flagship journal of The Association for Psychological Science (previously the American Psychological Society), is a leading publication in the field with a citation ranking/impact factor among the top ten worldwide. It publishes authoritative articles covering various domains of psychological science, including brain and behavior, clinical science, cognition, learning and memory, social psychology, and developmental psychology. In addition to full-length articles, the journal features summaries of new research developments and discussions on psychological issues in government and public affairs. "Psychological Science" is published twelve times annually.
期刊最新文献
Rethinking the Role of Teams and Training in Geopolitical Forecasting: The Effect of Uncontrolled Method Variance on Statistical Conclusions. Gaze Behavior Reveals Expectations of Potential Scene Changes. Why Do Children Think Words Are Mutually Exclusive? The Affect Misattribution Procedure Revisited: An Informational Account. Narrative Identity, Traits, and Trajectories of Depression and Well-Being: A 9-Year Longitudinal Study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1