Generative mechanisms of AI implementation: A critical realist perspective on predictive maintenance

IF 5.7 2区 管理学 Q1 INFORMATION SCIENCE & LIBRARY SCIENCE Information and Organization Pub Date : 2024-02-21 DOI:10.1016/j.infoandorg.2024.100503
Alexander Stohr , Philipp Ollig , Robert Keller , Alexander Rieger
{"title":"Generative mechanisms of AI implementation: A critical realist perspective on predictive maintenance","authors":"Alexander Stohr ,&nbsp;Philipp Ollig ,&nbsp;Robert Keller ,&nbsp;Alexander Rieger","doi":"10.1016/j.infoandorg.2024.100503","DOIUrl":null,"url":null,"abstract":"<div><p>Artificial intelligence (AI) promises various new opportunities to create and appropriate business value. However, many organizations – especially those in more traditional industries – struggle to seize these opportunities. To unpack the underlying reasons, we investigate how more traditional industries implement predictive maintenance, a promising application of AI in manufacturing organizations. For our analysis, we employ a multiple-case design and adopt a critical realist perspective to identify generative mechanisms of AI implementation. Overall, we find five interdependent mechanisms: experimentation; knowledge building and integration; data; anxiety; and inspiration. Using causal loop diagramming, we flesh out the socio-technical dynamics of these mechanisms and explore the organizational requirements of implementing AI. The resulting topology of generative mechanisms contributes to the research on AI management by offering rich insights into the cause-effect relationships that shape the implementation process. Moreover, it demonstrates how causal loop diagraming can improve the modeling and analysis of generative mechanisms.</p></div>","PeriodicalId":47253,"journal":{"name":"Information and Organization","volume":"34 2","pages":"Article 100503"},"PeriodicalIF":5.7000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1471772724000034/pdfft?md5=1be2de8ad628224aa34934e2d4f69c3d&pid=1-s2.0-S1471772724000034-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information and Organization","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1471772724000034","RegionNum":2,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INFORMATION SCIENCE & LIBRARY SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Artificial intelligence (AI) promises various new opportunities to create and appropriate business value. However, many organizations – especially those in more traditional industries – struggle to seize these opportunities. To unpack the underlying reasons, we investigate how more traditional industries implement predictive maintenance, a promising application of AI in manufacturing organizations. For our analysis, we employ a multiple-case design and adopt a critical realist perspective to identify generative mechanisms of AI implementation. Overall, we find five interdependent mechanisms: experimentation; knowledge building and integration; data; anxiety; and inspiration. Using causal loop diagramming, we flesh out the socio-technical dynamics of these mechanisms and explore the organizational requirements of implementing AI. The resulting topology of generative mechanisms contributes to the research on AI management by offering rich insights into the cause-effect relationships that shape the implementation process. Moreover, it demonstrates how causal loop diagraming can improve the modeling and analysis of generative mechanisms.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人工智能实施的生成机制:预测性维护的批判现实主义视角
人工智能(AI)带来了各种创造和利用商业价值的新机遇。然而,许多组织--尤其是那些传统行业的组织--都在努力抓住这些机遇。为了揭示其中的根本原因,我们研究了传统行业如何实施预测性维护,这是人工智能在制造企业中的一项前景广阔的应用。在分析中,我们采用了多案例设计,并采用批判现实主义的视角来识别人工智能实施的生成机制。总体而言,我们发现了五种相互依存的机制:实验、知识构建与整合、数据、焦虑和灵感。利用因果循环图,我们充实了这些机制的社会技术动力,并探索了实施人工智能的组织要求。由此得出的生成机制拓扑图为人工智能管理研究提供了丰富的见解,揭示了影响实施过程的因果关系。此外,它还展示了因果循环图如何改进生成机制的建模和分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
11.20
自引率
1.60%
发文量
18
期刊介绍: Advances in information and communication technologies are associated with a wide and increasing range of social consequences, which are experienced by individuals, work groups, organizations, interorganizational networks, and societies at large. Information technologies are implicated in all industries and in public as well as private enterprises. Understanding the relationships between information technologies and social organization is an increasingly important and urgent social and scholarly concern in many disciplinary fields.Information and Organization seeks to publish original scholarly articles on the relationships between information technologies and social organization. It seeks a scholarly understanding that is based on empirical research and relevant theory.
期刊最新文献
Stability and change in digital transformation: A repertoire model of institutionally embedded technology affordances Virtual social contagion in online support communities Transformed knowledge work infrastructures in times of forced remote work Editorial Board Digital innovation, platforms, and global strategy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1