{"title":"Monolayer indium selenide: an indirect bandgap material exhibits efficient brightening of dark excitons","authors":"Naomi Tabudlong Paylaga, Chang-Ti Chou, Chia-Chun Lin, Takashi Taniguchi, Kenji Watanabe, Raman Sankar, Yang-hao Chan, Shao-Yu Chen, Wei-Hua Wang","doi":"10.1038/s41699-024-00450-3","DOIUrl":null,"url":null,"abstract":"Atomically thin indium selenide (InSe) exhibits a sombrero-like valence band, leading to distinctive excitonic behaviors. It is known that the indirect band gap of atomically thin InSe leads to a weak emission from the lowest-energy excitonic state (A peak). However, the A peak emission of monolayer (ML) InSe was observed to be either absent or very weak, rendering the nature of its excitonic states largely unknown. Intriguingly, we demonstrate that ML InSe exhibits pronounced PL emission because of the efficient brightening of the momentum-indirect dark excitons. The mechanism is attributed to acoustic phonon-assisted radiative recombination facilitated by strong exciton-acoustic phonon coupling and extended wavefunction in momentum space. Systematic analysis of layer-, power-, and temperature-dependent PL demonstrates that a carrier localization model can account for the asymmetric line shape of the lowest-energy excitonic emission for atomically thin InSe. Our work reveals that atomically thin InSe is a promising platform for manipulating the tightly bound dark excitons in two-dimensional semiconductor-based optoelectronic devices.","PeriodicalId":19227,"journal":{"name":"npj 2D Materials and Applications","volume":" ","pages":"1-9"},"PeriodicalIF":9.1000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41699-024-00450-3.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj 2D Materials and Applications","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41699-024-00450-3","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Atomically thin indium selenide (InSe) exhibits a sombrero-like valence band, leading to distinctive excitonic behaviors. It is known that the indirect band gap of atomically thin InSe leads to a weak emission from the lowest-energy excitonic state (A peak). However, the A peak emission of monolayer (ML) InSe was observed to be either absent or very weak, rendering the nature of its excitonic states largely unknown. Intriguingly, we demonstrate that ML InSe exhibits pronounced PL emission because of the efficient brightening of the momentum-indirect dark excitons. The mechanism is attributed to acoustic phonon-assisted radiative recombination facilitated by strong exciton-acoustic phonon coupling and extended wavefunction in momentum space. Systematic analysis of layer-, power-, and temperature-dependent PL demonstrates that a carrier localization model can account for the asymmetric line shape of the lowest-energy excitonic emission for atomically thin InSe. Our work reveals that atomically thin InSe is a promising platform for manipulating the tightly bound dark excitons in two-dimensional semiconductor-based optoelectronic devices.
期刊介绍:
npj 2D Materials and Applications publishes papers on the fundamental behavior, synthesis, properties and applications of existing and emerging 2D materials. By selecting papers with the potential for impact, the journal aims to facilitate the transfer of the research of 2D materials into wide-ranging applications.