{"title":"A Low-Power Highly Reconfigurable Analog FIR Filter With 11-Bit Charge-Domain DAC for Narrowband Receivers","authors":"Chien-Wei Tseng;Zhen Feng;Zichen Fan;Hyochan An;Yunfan Wang;Hun-Seok Kim;David Blaauw","doi":"10.1109/LSSC.2024.3361380","DOIUrl":null,"url":null,"abstract":"An innovative, highly reconfigurable charge-domain analog finite-impulse-response (AFIR) filter for high-channel selectivity receivers is presented. This filter demonstrates excellent reconfigurability to different bandwidths and desired stopband rejection and realizes the coefficients in the charge-domain with time-varying pulse widths controlling the on-time of the transconductor. The charge-domain finite impulse response (FIR) principle is derived step by step in this letter. The proposed filter, manufactured in 28-nm CMOS process, occupies a compact area of 0.05 mm 2, and its bandwidth can be reconfigured from 0.37 to 4.6 MHz. The filter can achieve −70-dB stopband rejection with a sharp transition (\n<inline-formula> <tex-math>$-f_{-60 {\\mathrm {dB}}}^{/f}-3~ {\\mathrm {dB}}\\,\\,=$ </tex-math></inline-formula>\n 4.5) and low-power consumption of 0.356 mW.","PeriodicalId":13032,"journal":{"name":"IEEE Solid-State Circuits Letters","volume":"7 ","pages":"74-77"},"PeriodicalIF":2.2000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Solid-State Circuits Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10418260/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
An innovative, highly reconfigurable charge-domain analog finite-impulse-response (AFIR) filter for high-channel selectivity receivers is presented. This filter demonstrates excellent reconfigurability to different bandwidths and desired stopband rejection and realizes the coefficients in the charge-domain with time-varying pulse widths controlling the on-time of the transconductor. The charge-domain finite impulse response (FIR) principle is derived step by step in this letter. The proposed filter, manufactured in 28-nm CMOS process, occupies a compact area of 0.05 mm 2, and its bandwidth can be reconfigured from 0.37 to 4.6 MHz. The filter can achieve −70-dB stopband rejection with a sharp transition (
$-f_{-60 {\mathrm {dB}}}^{/f}-3~ {\mathrm {dB}}\,\,=$
4.5) and low-power consumption of 0.356 mW.