Spontaneous crystallization of strongly confined CsSnxPb1-xI3 perovskite colloidal quantum dots at room temperature

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Nature Communications Pub Date : 2024-02-21 DOI:10.1038/s41467-024-45945-1
Louwen Zhang, Hai Zhou, Yibo Chen, Zhimiao Zheng, Lishuai Huang, Chen Wang, Kailian Dong, Zhongqiang Hu, Weijun Ke, Guojia Fang
{"title":"Spontaneous crystallization of strongly confined CsSnxPb1-xI3 perovskite colloidal quantum dots at room temperature","authors":"Louwen Zhang, Hai Zhou, Yibo Chen, Zhimiao Zheng, Lishuai Huang, Chen Wang, Kailian Dong, Zhongqiang Hu, Weijun Ke, Guojia Fang","doi":"10.1038/s41467-024-45945-1","DOIUrl":null,"url":null,"abstract":"<p>The scalable and low-cost room temperature (RT) synthesis for pure-iodine all-inorganic perovskite colloidal quantum dots (QDs) is a challenge due to the phase transition induced by thermal unequilibrium. Here, we introduce a direct RT strongly confined spontaneous crystallization strategy in a Cs-deficient reaction system without polar solvents for synthesizing stable pure-iodine all-inorganic tin-lead (Sn-Pb) alloyed perovskite colloidal QDs, which exhibit bright yellow luminescence. By tuning the ratio of Cs/Pb precursors, the size confinement effect and optical band gap of the resultant CsSn<sub>x</sub>Pb<sub>1-x</sub>I<sub>3</sub> perovskite QDs can be well controlled. This strongly confined RT approach is universal for wider bandgap bromine- and chlorine-based all-inorganic and iodine-based hybrid perovskite QDs. The alloyed CsSn<sub>0.09</sub>Pb<sub>0.91</sub>I<sub>3</sub> QDs show superior yellow emission properties with prolonged carrier lifetime and significantly increased colloidal stability compared to the pristine CsPbI<sub>3</sub> QDs, which is enabled by strong size confinement, Sn<sup>2+</sup> passivation and enhanced formation energy. These findings provide a RT size-stabilized synthesis pathway to achieve high-performance pure-iodine all-inorganic Sn-Pb mixed perovskite colloidal QDs for optoelectronic applications.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"180 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-45945-1","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The scalable and low-cost room temperature (RT) synthesis for pure-iodine all-inorganic perovskite colloidal quantum dots (QDs) is a challenge due to the phase transition induced by thermal unequilibrium. Here, we introduce a direct RT strongly confined spontaneous crystallization strategy in a Cs-deficient reaction system without polar solvents for synthesizing stable pure-iodine all-inorganic tin-lead (Sn-Pb) alloyed perovskite colloidal QDs, which exhibit bright yellow luminescence. By tuning the ratio of Cs/Pb precursors, the size confinement effect and optical band gap of the resultant CsSnxPb1-xI3 perovskite QDs can be well controlled. This strongly confined RT approach is universal for wider bandgap bromine- and chlorine-based all-inorganic and iodine-based hybrid perovskite QDs. The alloyed CsSn0.09Pb0.91I3 QDs show superior yellow emission properties with prolonged carrier lifetime and significantly increased colloidal stability compared to the pristine CsPbI3 QDs, which is enabled by strong size confinement, Sn2+ passivation and enhanced formation energy. These findings provide a RT size-stabilized synthesis pathway to achieve high-performance pure-iodine all-inorganic Sn-Pb mixed perovskite colloidal QDs for optoelectronic applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
室温下强约束 CsSnxPb1-xI3 包晶胶体量子点的自发结晶
由于热不平衡引起的相变,纯碘无机包晶胶体量子点(QDs)的可扩展和低成本室温(RT)合成是一项挑战。在这里,我们介绍了一种在不使用极性溶剂的缺铯反应体系中直接在 RT 强约束下自发结晶的策略,用于合成稳定的纯碘无机锡铅(Sn-Pb)合金包晶胶体量子点,这种量子点呈现出明亮的黄色荧光。通过调整 Cs/Pb 前驱体的比例,可以很好地控制 CsSnxPb1-xI3 包晶 QD 的尺寸约束效应和光带隙。这种强约束 RT 方法适用于更宽带隙的溴基和氯基无机包晶以及碘基混合包晶 QD。与原始的 CsPbI3 QDs 相比,合金化的 CsSn0.09Pb0.91I3 QDs 具有更优越的黄色发射特性,载流子寿命更长,胶体稳定性显著提高,这得益于强尺寸约束、Sn2+ 钝化和更高的形成能。这些发现为实现高性能纯碘无机锡铅混合包晶胶体 QDs 的光电应用提供了一种 RT 尺寸稳定合成途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
文献相关原料
公司名称
产品信息
阿拉丁
ethyl acetate (C4H8O2)
阿拉丁
n-hexane (C6H14)
阿拉丁
oleylamine
阿拉丁
lead(II) acetate trihydrate
阿拉丁
chlorotrimethylsilane
阿拉丁
bromotrimethylsilane
阿拉丁
iodotrimethylsilane
阿拉丁
tin(II) 2-ethylhexanoate
阿拉丁
formamidine acetate
阿拉丁
cesium acetate
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
期刊最新文献
Maternal behavior promotes resilience to adolescent stress in mice through a microglia-neuron axis Assembly of (hetero)aryl sulfilimines via copper-catalyzed enantioselective S-arylation of sulfenamides with (hetero)aryl Iodides Salmonella exploits LRRK2-dependent plasma membrane dynamics to invade host cells A dynamic isotope effect in the nucleophilic substitution reaction between F− and CD3I Carbene-supported triphosphorus anion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1