Yamin Zhang, Wei Wan, Rui Shen, Bohao Zhang, Li Wang, Hongyi Zhang, Xiaoyue Ren, Jie Cui, Jinpeng Liu
{"title":"Prognostic Factors and Construction of Nomogram Prediction Model of Lung Cancer Patients Using Clinical and Blood Laboratory Parameters","authors":"Yamin Zhang, Wei Wan, Rui Shen, Bohao Zhang, Li Wang, Hongyi Zhang, Xiaoyue Ren, Jie Cui, Jinpeng Liu","doi":"10.2147/ott.s444396","DOIUrl":null,"url":null,"abstract":"<strong>Objective:</strong> This work aimed to explore the prognostic risk factors of lung cancer (LC) patients and establish a line chart prediction model.<br/><strong>Methods:</strong> A total of 322 LC patients were taken as the study subjects. They were randomly divided into a training set (n = 202) and a validation set (n = 120). Basic information and laboratory indicators were collected, and the progression-free survival (PFS) and overall survival (OS) were followed up. Single-factor and cyclooxygenase (COX) multivariate analyses were performed on the training set to construct a Nomogram prediction model, which was validated with 120 patients in the validation set, and Harrell’s consistency was analyzed.<br/><strong>Results:</strong> Single-factor analysis revealed significant differences in PFS (<em>P</em>< 0.05) between genders, body mass index (BMI), carcinoembryonic antigen (CEA), cancer antigen 125 (CA125), squamous cell carcinoma antigen (SCCA), treatment methods, treatment response evaluation, smoking status, presence of pericardial effusion, and programmed death ligand 1 (PD-L1) at 0 and 1– 50%. Significant differences in OS (<em>P</em>< 0.05) were observed for age, tumor location, treatment methods, White blood cells (WBC), uric acid (UA), CA125, pro-gastrin-releasing peptide (ProGRP), SCCA, cytokeratin fragment 21 (CYFRA21), and smoking status. COX analysis identified male gender, progressive disease (PD) as treatment response, and SCCA > 1.6 as risk factors for LC PFS. The consistency indices of the line chart models for predicting PFS and OS were 0.782 and 0.772, respectively.<br/><strong>Conclusion:</strong> Male gender, treatment response of PD, and SCCA > 1.6 are independent risk factors affecting the survival of LC patients. The PFS line chart model demonstrates good concordance.<br/><br/><strong>Keywords:</strong> laboratory parameters, LC, nomogram prediction model, KM analysis, cox multivariate analysis<br/>","PeriodicalId":19534,"journal":{"name":"OncoTargets and therapy","volume":"178 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"OncoTargets and therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/ott.s444396","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: This work aimed to explore the prognostic risk factors of lung cancer (LC) patients and establish a line chart prediction model. Methods: A total of 322 LC patients were taken as the study subjects. They were randomly divided into a training set (n = 202) and a validation set (n = 120). Basic information and laboratory indicators were collected, and the progression-free survival (PFS) and overall survival (OS) were followed up. Single-factor and cyclooxygenase (COX) multivariate analyses were performed on the training set to construct a Nomogram prediction model, which was validated with 120 patients in the validation set, and Harrell’s consistency was analyzed. Results: Single-factor analysis revealed significant differences in PFS (P< 0.05) between genders, body mass index (BMI), carcinoembryonic antigen (CEA), cancer antigen 125 (CA125), squamous cell carcinoma antigen (SCCA), treatment methods, treatment response evaluation, smoking status, presence of pericardial effusion, and programmed death ligand 1 (PD-L1) at 0 and 1– 50%. Significant differences in OS (P< 0.05) were observed for age, tumor location, treatment methods, White blood cells (WBC), uric acid (UA), CA125, pro-gastrin-releasing peptide (ProGRP), SCCA, cytokeratin fragment 21 (CYFRA21), and smoking status. COX analysis identified male gender, progressive disease (PD) as treatment response, and SCCA > 1.6 as risk factors for LC PFS. The consistency indices of the line chart models for predicting PFS and OS were 0.782 and 0.772, respectively. Conclusion: Male gender, treatment response of PD, and SCCA > 1.6 are independent risk factors affecting the survival of LC patients. The PFS line chart model demonstrates good concordance.
期刊介绍:
OncoTargets and Therapy is an international, peer-reviewed journal focusing on molecular aspects of cancer research, that is, the molecular diagnosis of and targeted molecular or precision therapy for all types of cancer.
The journal is characterized by the rapid reporting of high-quality original research, basic science, reviews and evaluations, expert opinion and commentary that shed novel insight on a cancer or cancer subtype.
Specific topics covered by the journal include:
-Novel therapeutic targets and innovative agents
-Novel therapeutic regimens for improved benefit and/or decreased side effects
-Early stage clinical trials
Further considerations when submitting to OncoTargets and Therapy:
-Studies containing in vivo animal model data will be considered favorably.
-Tissue microarray analyses will not be considered except in cases where they are supported by comprehensive biological studies involving multiple cell lines.
-Biomarker association studies will be considered only when validated by comprehensive in vitro data and analysis of human tissue samples.
-Studies utilizing publicly available data (e.g. GWAS/TCGA/GEO etc.) should add to the body of knowledge about a specific disease or relevant phenotype and must be validated using the authors’ own data through replication in an independent sample set and functional follow-up.
-Bioinformatics studies must be validated using the authors’ own data through replication in an independent sample set and functional follow-up.
-Single nucleotide polymorphism (SNP) studies will not be considered.