The KRAS gene is nearly ubiquitously subjected to activating mutation in pancreatic adenocarcinomas (PDAC), occurring at a frequency of over 90% in tumors. Mutant KRAS drives sustained signaling through the MAPK pathway to affect frequently disrupted cancer phenotypes including transcription, proliferation and cell survival. Recent research has shown that PDAC tumor growth and survival required a guanine nucleotide exchange factor for RAS homolog family member A (RhoA) called GEF-H1. The GEF-H1 protein, encoded by the ARHGEF2 gene, is a microtubule-associated GEF for RhoA that promotes invasion-migration of PDAC cells via activation of RhoA. Unexpectedly, independent of its RhoGEF activity, GEF-H1 was found to potentiate MAPK signaling by scaffolding protein phosphatase 2A (PP2A) to the kinase suppressor of Ras 1 (KSR-1). In a feedback-dependent manner, enhanced MAPK activity drives expression of ARHGEF2 via regulation of transcription factors ETS and SP, and the RAS responsive element-binding protein 1 (RREB1). RREB1 a negative regulator of ARHGEF2 expression, is downregulated in PDAC cells, which permits sustained expression of GEF-H1 for PDAC tumor survival and subsequent MAPK pathway activation. Given that MAPK targeted therapies show limited clinical efficacy, highlights the need for novel targets. This review describes the unexpected complexity of GEF-H1 function leading to positive feedback that potentiates RAS-MAPK signaling and suggests inhibition of GEF-H1 as a therapeutic strategy for RAS-driven cancers.