Analysis of the Lifecycles of Automotive Resistor Lead in Random Vibration

Huang Linsen
{"title":"Analysis of the Lifecycles of Automotive Resistor Lead in Random Vibration","authors":"Huang Linsen","doi":"10.1007/s10836-024-06099-6","DOIUrl":null,"url":null,"abstract":"<p>The lifecycles of vehicular resistor lead in random vibration environment were analyzed in this technical note and the finite element model of a vehicular printed circuit board (PCB) was established. It is with two short edges of PCB fixed for boundary condition to simulate the actual working conditions of the vehicle driving on the road, the constrained modal analysis was simulated and experimental verification were carried out. Both the PCB and the vehicular resistor which soldered on PCB were excited vertically according to Standard GJB150. Based on simulated vibration excitation environment, the power spectral density (PSD) stress value of the resistor lead was calculated. The lifecycles of the resistor lead were calculated theoretically and were verified by following failure-oriented accelerated testing (FOAT). Finally, in order to extend the lifecycles of resistor lead, an improved solution for PCB is put forward.</p>","PeriodicalId":501485,"journal":{"name":"Journal of Electronic Testing","volume":"81 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electronic Testing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10836-024-06099-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The lifecycles of vehicular resistor lead in random vibration environment were analyzed in this technical note and the finite element model of a vehicular printed circuit board (PCB) was established. It is with two short edges of PCB fixed for boundary condition to simulate the actual working conditions of the vehicle driving on the road, the constrained modal analysis was simulated and experimental verification were carried out. Both the PCB and the vehicular resistor which soldered on PCB were excited vertically according to Standard GJB150. Based on simulated vibration excitation environment, the power spectral density (PSD) stress value of the resistor lead was calculated. The lifecycles of the resistor lead were calculated theoretically and were verified by following failure-oriented accelerated testing (FOAT). Finally, in order to extend the lifecycles of resistor lead, an improved solution for PCB is put forward.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
汽车电阻器引线在随机振动中的生命周期分析
本技术说明分析了随机振动环境下车辆电阻引线的生命周期,并建立了车辆印刷电路板(PCB)的有限元模型。该模型以印刷电路板的两条短边为边界条件,模拟车辆在道路上行驶的实际工况,进行了约束模态分析模拟和实验验证。根据 GJB150 标准,对印刷电路板和焊接在印刷电路板上的车辆电阻器进行垂直激励。根据模拟的振动激励环境,计算了电阻引线的功率谱密度(PSD)应力值。电阻引线的寿命周期由理论计算得出,并通过失效导向加速测试(FOAT)进行了验证。最后,为了延长电阻引线的生命周期,提出了一种改进的 PCB 解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Automatic Software Testing Method to Discover Hard-to-Detect Faults Using Hybrid Olympiad Optimization Algorithm High-Dimensional Feature Fault Diagnosis Method Based on HEFS-LGBM Pebble Traversal-Based Fault Detection and Advanced Reconfiguration Technique for Digital Microfluidic Biochips Predicting Energy Dissipation in QCA-Based Layered-T Gates Under Cell Defects and Polarisation: A Study with Machine-Learning Models Investigation of Silicon Aging Effects in Dopingless PUF for Reliable Security Solution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1