Ward Deferm , Tiffany Tang , Matthijs Moerkerke , Nicky Daniels , Jean Steyaert , Kaat Alaerts , Els Ortibus , Gunnar Naulaers , Bart Boets
{"title":"Subtle microstructural alterations in white matter tracts involved in socio-emotional processing after very preterm birth","authors":"Ward Deferm , Tiffany Tang , Matthijs Moerkerke , Nicky Daniels , Jean Steyaert , Kaat Alaerts , Els Ortibus , Gunnar Naulaers , Bart Boets","doi":"10.1016/j.nicl.2024.103580","DOIUrl":null,"url":null,"abstract":"<div><p>Children born very preterm (VPT, < 32 weeks of gestation) have an increased risk of developing socio-emotional difficulties. Possible neural substrates for these socio-emotional difficulties are alterations in the structural connectivity of the social brain due to premature birth. The objective of the current study was to study microstructural white matter integrity in VPT versus full-term (FT) born school-aged children along twelve white matter tracts involved in socio-emotional processing. Diffusion MRI scans were obtained from a sample of 35 VPT and 38 FT 8-to-12-year-old children. Tractography was performed using TractSeg, a state-of-the-art neural network-based approach, which offers investigation of detailed tract profiles of fractional anisotropy (FA). Group differences in FA along the tracts were investigated using both a traditional and complementary functional data analysis approach. Exploratory correlations were performed between the Social Responsiveness Scale (SRS-2), a parent-report questionnaire assessing difficulties in social functioning, and FA along the tract. Both analyses showed significant reductions in FA for the VPT group along the middle portion of the right SLF I and an anterior portion of the left SLF II. These group differences possibly indicate altered white matter maturation due to premature birth and may contribute to altered functional connectivity in the Theory of Mind network which has been documented in earlier work with VPT samples. Apart from reduced social motivation in the VPT group, there were no significant group differences in reported social functioning, as assessed by SRS-2. We found that in the VPT group higher FA values in segments of the left SLF I and right SLF II were associated with better social functioning. Surprisingly, the opposite was found for segments in the right IFO, where higher FA values were associated with worse reported social functioning. Since no significant correlations were found for the FT group, this relationship may be specific for VPT children. The current study overcomes methodological limitations of previous studies by more accurately segmenting white matter tracts using constrained spherical deconvolution based tractography, by applying complementary tractometry analysis approaches to estimate changes in FA more accurately, and by investigating the FA profile along the three components of the SLF.</p></div>","PeriodicalId":54359,"journal":{"name":"Neuroimage-Clinical","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2213158224000196/pdfft?md5=643865ad8546aeab53fe40c293b9e29f&pid=1-s2.0-S2213158224000196-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroimage-Clinical","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213158224000196","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROIMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Children born very preterm (VPT, < 32 weeks of gestation) have an increased risk of developing socio-emotional difficulties. Possible neural substrates for these socio-emotional difficulties are alterations in the structural connectivity of the social brain due to premature birth. The objective of the current study was to study microstructural white matter integrity in VPT versus full-term (FT) born school-aged children along twelve white matter tracts involved in socio-emotional processing. Diffusion MRI scans were obtained from a sample of 35 VPT and 38 FT 8-to-12-year-old children. Tractography was performed using TractSeg, a state-of-the-art neural network-based approach, which offers investigation of detailed tract profiles of fractional anisotropy (FA). Group differences in FA along the tracts were investigated using both a traditional and complementary functional data analysis approach. Exploratory correlations were performed between the Social Responsiveness Scale (SRS-2), a parent-report questionnaire assessing difficulties in social functioning, and FA along the tract. Both analyses showed significant reductions in FA for the VPT group along the middle portion of the right SLF I and an anterior portion of the left SLF II. These group differences possibly indicate altered white matter maturation due to premature birth and may contribute to altered functional connectivity in the Theory of Mind network which has been documented in earlier work with VPT samples. Apart from reduced social motivation in the VPT group, there were no significant group differences in reported social functioning, as assessed by SRS-2. We found that in the VPT group higher FA values in segments of the left SLF I and right SLF II were associated with better social functioning. Surprisingly, the opposite was found for segments in the right IFO, where higher FA values were associated with worse reported social functioning. Since no significant correlations were found for the FT group, this relationship may be specific for VPT children. The current study overcomes methodological limitations of previous studies by more accurately segmenting white matter tracts using constrained spherical deconvolution based tractography, by applying complementary tractometry analysis approaches to estimate changes in FA more accurately, and by investigating the FA profile along the three components of the SLF.
期刊介绍:
NeuroImage: Clinical, a journal of diseases, disorders and syndromes involving the Nervous System, provides a vehicle for communicating important advances in the study of abnormal structure-function relationships of the human nervous system based on imaging.
The focus of NeuroImage: Clinical is on defining changes to the brain associated with primary neurologic and psychiatric diseases and disorders of the nervous system as well as behavioral syndromes and developmental conditions. The main criterion for judging papers is the extent of scientific advancement in the understanding of the pathophysiologic mechanisms of diseases and disorders, in identification of functional models that link clinical signs and symptoms with brain function and in the creation of image based tools applicable to a broad range of clinical needs including diagnosis, monitoring and tracking of illness, predicting therapeutic response and development of new treatments. Papers dealing with structure and function in animal models will also be considered if they reveal mechanisms that can be readily translated to human conditions.