Guidelines for the use of spatially varying coefficients in species distribution models

IF 6.3 1区 环境科学与生态学 Q1 ECOLOGY Global Ecology and Biogeography Pub Date : 2024-02-21 DOI:10.1111/geb.13814
Jeffrey W. Doser, Marc Kéry, Sarah P. Saunders, Andrew O. Finley, Brooke L. Bateman, Joanna Grand, Shannon Reault, Aaron S. Weed, Elise F. Zipkin
{"title":"Guidelines for the use of spatially varying coefficients in species distribution models","authors":"Jeffrey W. Doser,&nbsp;Marc Kéry,&nbsp;Sarah P. Saunders,&nbsp;Andrew O. Finley,&nbsp;Brooke L. Bateman,&nbsp;Joanna Grand,&nbsp;Shannon Reault,&nbsp;Aaron S. Weed,&nbsp;Elise F. Zipkin","doi":"10.1111/geb.13814","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Aim</h3>\n \n <p>Species distribution models (SDMs) are increasingly applied across macroscales using detection-nondetection data. These models typically assume that a single set of regression coefficients can adequately describe species–environment relationships and/or population trends. However, such relationships often show nonlinear and/or spatially varying patterns that arise from complex interactions with abiotic and biotic processes that operate at different scales. Spatially varying coefficient (SVC) models can readily account for variability in the effects of environmental covariates. Yet, their use in ecology is relatively scarce due to gaps in understanding the inferential benefits that SVC models can provide compared to simpler frameworks.</p>\n </section>\n \n <section>\n \n <h3> Innovation</h3>\n \n <p>Here we demonstrate the inferential benefits of SVC SDMs, with a particular focus on how this approach can be used to generate and test ecological hypotheses regarding the drivers of spatial variability in population trends and species–environment relationships. We illustrate the inferential benefits of SVC SDMs with simulations and two case studies: one that assesses spatially varying trends of 51 forest bird species in the eastern United States over two decades and a second that evaluates spatial variability in the effects of five decades of land cover change on grasshopper sparrow (<i>Ammodramus savannarum</i>) occurrence across the continental United States.</p>\n </section>\n \n <section>\n \n <h3> Main conclusions</h3>\n \n <p>We found strong support for SVC SDMs compared to simpler alternatives in both empirical case studies. Factors operating at fine spatial scales, accounted for by the SVCs, were the primary divers of spatial variability in forest bird occurrence trends. Additionally, SVCs revealed complex species–habitat relationships with grassland and cropland area for grasshopper sparrow, providing nuanced insights into how future land use change may shape its distribution. These applications display the utility of SVC SDMs to help reveal the environmental factors that drive species distributions across both local and broad scales. We conclude by discussing the potential applications of SVC SDMs in ecology and conservation.</p>\n </section>\n </div>","PeriodicalId":176,"journal":{"name":"Global Ecology and Biogeography","volume":"33 4","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/geb.13814","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Ecology and Biogeography","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/geb.13814","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Aim

Species distribution models (SDMs) are increasingly applied across macroscales using detection-nondetection data. These models typically assume that a single set of regression coefficients can adequately describe species–environment relationships and/or population trends. However, such relationships often show nonlinear and/or spatially varying patterns that arise from complex interactions with abiotic and biotic processes that operate at different scales. Spatially varying coefficient (SVC) models can readily account for variability in the effects of environmental covariates. Yet, their use in ecology is relatively scarce due to gaps in understanding the inferential benefits that SVC models can provide compared to simpler frameworks.

Innovation

Here we demonstrate the inferential benefits of SVC SDMs, with a particular focus on how this approach can be used to generate and test ecological hypotheses regarding the drivers of spatial variability in population trends and species–environment relationships. We illustrate the inferential benefits of SVC SDMs with simulations and two case studies: one that assesses spatially varying trends of 51 forest bird species in the eastern United States over two decades and a second that evaluates spatial variability in the effects of five decades of land cover change on grasshopper sparrow (Ammodramus savannarum) occurrence across the continental United States.

Main conclusions

We found strong support for SVC SDMs compared to simpler alternatives in both empirical case studies. Factors operating at fine spatial scales, accounted for by the SVCs, were the primary divers of spatial variability in forest bird occurrence trends. Additionally, SVCs revealed complex species–habitat relationships with grassland and cropland area for grasshopper sparrow, providing nuanced insights into how future land use change may shape its distribution. These applications display the utility of SVC SDMs to help reveal the environmental factors that drive species distributions across both local and broad scales. We conclude by discussing the potential applications of SVC SDMs in ecology and conservation.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
物种分布模型中空间变化系数的使用指南
物种分布模型(SDM)越来越多地应用于使用检测-非检测数据的宏观尺度。这些模型通常假设一组回归系数可以充分描述物种与环境的关系和/或种群趋势。然而,这种关系往往表现出非线性和/或空间变化的模式,这些模式是由在不同尺度上运行的非生物和生物过程的复杂相互作用引起的。空间变化系数(SVC)模型可以很容易地解释环境协变量效应的变化。然而,由于对空间变化系数模型与更简单的框架相比所能提供的推论益处的理解存在差距,它们在生态学中的应用相对较少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Global Ecology and Biogeography
Global Ecology and Biogeography 环境科学-生态学
CiteScore
12.10
自引率
3.10%
发文量
170
审稿时长
3 months
期刊介绍: Global Ecology and Biogeography (GEB) welcomes papers that investigate broad-scale (in space, time and/or taxonomy), general patterns in the organization of ecological systems and assemblages, and the processes that underlie them. In particular, GEB welcomes studies that use macroecological methods, comparative analyses, meta-analyses, reviews, spatial analyses and modelling to arrive at general, conceptual conclusions. Studies in GEB need not be global in spatial extent, but the conclusions and implications of the study must be relevant to ecologists and biogeographers globally, rather than being limited to local areas, or specific taxa. Similarly, GEB is not limited to spatial studies; we are equally interested in the general patterns of nature through time, among taxa (e.g., body sizes, dispersal abilities), through the course of evolution, etc. Further, GEB welcomes papers that investigate general impacts of human activities on ecological systems in accordance with the above criteria.
期刊最新文献
Fine-Grain Predictions Are Key to Accurately Represent Continental-Scale Biodiversity Patterns Issue Information Thermal Forcing Versus Chilling? Misspecification of Temperature Controls in Spring Phenology Models Predicting Landscape Conversion Impact on Small Mammal Occurrence and the Transmission of Parasites in the Atlantic Forest Spatial Variation in Upper Limits of Coral Cover on the Great Barrier Reef
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1