{"title":"Effect of pressing pressure on the capacity of recycled graphite anode","authors":"","doi":"10.1007/s00706-024-03174-8","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>Due to the increasing demand for lithium-ion batteries, there is an urgent requirement for environmentally friendly and efficient means of recycling these batteries. Graphite, a readily available and cost-effective material, tends to be neglected compared to more expensive metals such as cobalt or nickel. To achieve the new European targets, it will be necessary to focus on recycling even less valuable materials, such as graphite. Direct recycling of graphite represents an environmentally and economically viable solution. However, the capacity of recycled graphite depends on several factors, with pressing pressure being a potential variable. Within this article, we have focused on the impact of pressing pressure of spent graphite anode. The recycling was performed on the battery sample with a known lifetime history. It was found that when optimized, it is possible to achieve high stability and high capacities exceeding 300 mAh/g.</p> <span> <h3>Graphical abstract</h3> <p><span> <span> <img alt=\"\" src=\"https://static-content.springer.com/image/MediaObjects/706_2024_3174_Figa_HTML.png\"/> </span> </span></p> </span>","PeriodicalId":19011,"journal":{"name":"Monatshefte für Chemie / Chemical Monthly","volume":"140 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monatshefte für Chemie / Chemical Monthly","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00706-024-03174-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Due to the increasing demand for lithium-ion batteries, there is an urgent requirement for environmentally friendly and efficient means of recycling these batteries. Graphite, a readily available and cost-effective material, tends to be neglected compared to more expensive metals such as cobalt or nickel. To achieve the new European targets, it will be necessary to focus on recycling even less valuable materials, such as graphite. Direct recycling of graphite represents an environmentally and economically viable solution. However, the capacity of recycled graphite depends on several factors, with pressing pressure being a potential variable. Within this article, we have focused on the impact of pressing pressure of spent graphite anode. The recycling was performed on the battery sample with a known lifetime history. It was found that when optimized, it is possible to achieve high stability and high capacities exceeding 300 mAh/g.