Evolution, Modification, and Deformation of Continental Lithosphere: Insights from the Eastern Margin of North America

IF 11.3 1区 地球科学 Q1 ASTRONOMY & ASTROPHYSICS Annual Review of Earth and Planetary Sciences Pub Date : 2024-02-21 DOI:10.1146/annurev-earth-040522-115229
Maureen D. Long
{"title":"Evolution, Modification, and Deformation of Continental Lithosphere: Insights from the Eastern Margin of North America","authors":"Maureen D. Long","doi":"10.1146/annurev-earth-040522-115229","DOIUrl":null,"url":null,"abstract":"Continental lithosphere is deformed, destroyed, or otherwise modified in several ways. Processes that modify the lithosphere include subduction, terrane accretion, orogenesis, rifting, volcanism/magmatism, lithospheric loss or delamination, small-scale or edge-driven convection, and plume-lithosphere interaction. The eastern North American margin (ENAM) provides an exceptional locale to study this broad suite of processes, having undergone multiple complete Wilson cycles of supercontinent formation and dispersal, along with ∼200 Ma of postrift evolution. Moreover, recent data collection efforts associated with EarthScope, GeoPRISMS, and related projects have led to a wealth of new observations in eastern North America. Here I highlight recent advances in our understanding of the structure of the continental lithosphere beneath eastern North America and the processes that have modified it through geologic time, with a focus on recent geophysical imaging that has illuminated the lithosphere in unprecedented detail. ▪ Eastern North America experienced a range of processes that deform, destroy, or modify continental lithosphere, providing new insights into how lithosphere evolves through time. ▪ Subduction and terrane accretion, continental rifting, and postrift evolution have all played a role in shaping lithospheric structure beneath eastern North America. ▪ Relict structures from past tectonic events are well-preserved in ENAM lithosphere; however, lithospheric modification that postdates the breakup of Pangea has also been significant.Expected final online publication date for the Annual Review of Earth and Planetary Sciences, Volume 52 is May 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":8034,"journal":{"name":"Annual Review of Earth and Planetary Sciences","volume":"30 1","pages":""},"PeriodicalIF":11.3000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Earth and Planetary Sciences","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1146/annurev-earth-040522-115229","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Continental lithosphere is deformed, destroyed, or otherwise modified in several ways. Processes that modify the lithosphere include subduction, terrane accretion, orogenesis, rifting, volcanism/magmatism, lithospheric loss or delamination, small-scale or edge-driven convection, and plume-lithosphere interaction. The eastern North American margin (ENAM) provides an exceptional locale to study this broad suite of processes, having undergone multiple complete Wilson cycles of supercontinent formation and dispersal, along with ∼200 Ma of postrift evolution. Moreover, recent data collection efforts associated with EarthScope, GeoPRISMS, and related projects have led to a wealth of new observations in eastern North America. Here I highlight recent advances in our understanding of the structure of the continental lithosphere beneath eastern North America and the processes that have modified it through geologic time, with a focus on recent geophysical imaging that has illuminated the lithosphere in unprecedented detail. ▪ Eastern North America experienced a range of processes that deform, destroy, or modify continental lithosphere, providing new insights into how lithosphere evolves through time. ▪ Subduction and terrane accretion, continental rifting, and postrift evolution have all played a role in shaping lithospheric structure beneath eastern North America. ▪ Relict structures from past tectonic events are well-preserved in ENAM lithosphere; however, lithospheric modification that postdates the breakup of Pangea has also been significant.Expected final online publication date for the Annual Review of Earth and Planetary Sciences, Volume 52 is May 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大陆岩石圈的演化、改造和变形:北美东缘的启示
大陆岩石圈通过多种方式发生变形、破坏或改变。改变岩石圈的过程包括俯冲、陆相沉积、造山运动、断裂、火山/岩浆运动、岩石圈损失或分层、小规模或边缘驱动的对流以及羽状岩石圈相互作用。北美东部边缘(ENAM)经历了多个完整的威尔逊超大陆形成和散布周期,以及∼200 Ma的断裂后演化过程,为研究这一系列广泛的过程提供了一个特殊的地点。此外,最近与EarthScope、GeoPRISMS和相关项目有关的数据收集工作也为北美东部带来了大量新的观测数据。在此,我将重点介绍我们对北美东部地下大陆岩石圈结构以及地质年代改变岩石圈的过程的最新理解进展,重点介绍最近的地球物理成像,这些成像以前所未有的细节揭示了岩石圈的结构。北美东部经历了一系列使大陆岩石圈变形、破坏或改变的过程,为岩石圈如何随时间演变提供了新的见解。俯冲和陆相沉积、大陆裂解以及裂解后的演化都对北美洲东部地下岩石圈结构的形成起了作用。过去构造事件的遗迹结构在ENAM岩石圈中保存完好;然而,潘加断裂后的岩石圈改造也很重要。《地球与行星科学年刊》第52卷的最终在线出版日期预计为2024年5月。修订后的预计日期请参见 http://www.annualreviews.org/page/journal/pubdates。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Annual Review of Earth and Planetary Sciences
Annual Review of Earth and Planetary Sciences 地学天文-地球科学综合
CiteScore
25.10
自引率
0.00%
发文量
25
期刊介绍: Since its establishment in 1973, the Annual Review of Earth and Planetary Sciences has been dedicated to providing comprehensive coverage of advancements in the field. This esteemed publication examines various aspects of earth and planetary sciences, encompassing climate, environment, geological hazards, planet formation, and the evolution of life. To ensure wider accessibility, the latest volume of the journal has transitioned from a gated model to open access through the Subscribe to Open program by Annual Reviews. Consequently, all articles published in this volume are now available under the Creative Commons Attribution (CC BY) license.
期刊最新文献
Minna de Honkoku: Citizen-Participation Transcription Project for Japanese Historical Documents Isotope Evolution of the Depleted Mantle Critical Minerals Metal Isotopes in Mammalian Tissues Geology: The Once and Future Crown Jewel of Science?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1