{"title":"Efficient identity security authentication method based on improved R-LWE algorithm in IoT environment","authors":"Lin Yang","doi":"10.1186/s13635-024-00153-8","DOIUrl":null,"url":null,"abstract":"In recent years, various smart devices based on IoT technology, such as smart homes, healthcare, detection, and logistics systems, have emerged. However, as the number of IoT-connected devices increases, securing the IoT is becoming increasingly challenging. To tackle the increasing security challenges caused by the proliferation of IoT devices, this research proposes an innovative method for IoT identity authentication. The method is based on an improved ring-learning with errors (R-LWE) algorithm, which encrypts and decrypts communication between devices and servers effectively using polynomial modular multiplication and modular addition operations. The main innovation of this study is the improvement of the traditional R-LWE algorithm, enhancing its efficiency and security. Experimental results demonstrated that, when compared to number theory-based algorithms and elliptic curve cryptography algorithms at a 256-bit security level, the enhanced algorithm achieves significant advantages. The improved algorithm encrypted 20 data points with an average runtime of only 3.6 ms, compared to 7.3 ms and 7.7 ms for the other algorithms. Similarly, decrypting the same amount of data had an average runtime of 2.9 ms, as opposed to 7.3 ms and 8 ms for the other algorithms. Additionally, the improved R-LWE algorithm had significant advantages in terms of communication and storage costs. Compared to the number theory-based algorithm, the R-LWE algorithm reduced communication and storage costs by 3 °C each, and compared to elliptic curve cryptography, it reduced them by 4 °C each. This achievement not only enhances the efficiency of encryption and decryption but also lowers the overall operational costs of the algorithm. The research has made significant strides in improving the security and efficiency of IoT device identity authentication by enhancing the R-LWE algorithm. This study provides theoretical and practical foundations for the development and application of related technologies, as well as new solutions for IoT security.","PeriodicalId":46070,"journal":{"name":"EURASIP Journal on Information Security","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EURASIP Journal on Information Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13635-024-00153-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, various smart devices based on IoT technology, such as smart homes, healthcare, detection, and logistics systems, have emerged. However, as the number of IoT-connected devices increases, securing the IoT is becoming increasingly challenging. To tackle the increasing security challenges caused by the proliferation of IoT devices, this research proposes an innovative method for IoT identity authentication. The method is based on an improved ring-learning with errors (R-LWE) algorithm, which encrypts and decrypts communication between devices and servers effectively using polynomial modular multiplication and modular addition operations. The main innovation of this study is the improvement of the traditional R-LWE algorithm, enhancing its efficiency and security. Experimental results demonstrated that, when compared to number theory-based algorithms and elliptic curve cryptography algorithms at a 256-bit security level, the enhanced algorithm achieves significant advantages. The improved algorithm encrypted 20 data points with an average runtime of only 3.6 ms, compared to 7.3 ms and 7.7 ms for the other algorithms. Similarly, decrypting the same amount of data had an average runtime of 2.9 ms, as opposed to 7.3 ms and 8 ms for the other algorithms. Additionally, the improved R-LWE algorithm had significant advantages in terms of communication and storage costs. Compared to the number theory-based algorithm, the R-LWE algorithm reduced communication and storage costs by 3 °C each, and compared to elliptic curve cryptography, it reduced them by 4 °C each. This achievement not only enhances the efficiency of encryption and decryption but also lowers the overall operational costs of the algorithm. The research has made significant strides in improving the security and efficiency of IoT device identity authentication by enhancing the R-LWE algorithm. This study provides theoretical and practical foundations for the development and application of related technologies, as well as new solutions for IoT security.
期刊介绍:
The overall goal of the EURASIP Journal on Information Security, sponsored by the European Association for Signal Processing (EURASIP), is to bring together researchers and practitioners dealing with the general field of information security, with a particular emphasis on the use of signal processing tools in adversarial environments. As such, it addresses all works whereby security is achieved through a combination of techniques from cryptography, computer security, machine learning and multimedia signal processing. Application domains lie, for example, in secure storage, retrieval and tracking of multimedia data, secure outsourcing of computations, forgery detection of multimedia data, or secure use of biometrics. The journal also welcomes survey papers that give the reader a gentle introduction to one of the topics covered as well as papers that report large-scale experimental evaluations of existing techniques. Pure cryptographic papers are outside the scope of the journal. Topics relevant to the journal include, but are not limited to: • Multimedia security primitives (such digital watermarking, perceptual hashing, multimedia authentictaion) • Steganography and Steganalysis • Fingerprinting and traitor tracing • Joint signal processing and encryption, signal processing in the encrypted domain, applied cryptography • Biometrics (fusion, multimodal biometrics, protocols, security issues) • Digital forensics • Multimedia signal processing approaches tailored towards adversarial environments • Machine learning in adversarial environments • Digital Rights Management • Network security (such as physical layer security, intrusion detection) • Hardware security, Physical Unclonable Functions • Privacy-Enhancing Technologies for multimedia data • Private data analysis, security in outsourced computations, cloud privacy