{"title":"IPRSDP: a primal-dual interior-point relaxation algorithm for semidefinite programming","authors":"Rui-Jin Zhang, Xin-Wei Liu, Yu-Hong Dai","doi":"10.1007/s10589-024-00558-8","DOIUrl":null,"url":null,"abstract":"<p>We propose an efficient primal-dual interior-point relaxation algorithm based on a smoothing barrier augmented Lagrangian, called IPRSDP, for solving semidefinite programming problems in this paper. The IPRSDP algorithm has three advantages over classical interior-point methods. Firstly, IPRSDP does not require the iterative points to be positive definite. Consequently, it can easily be combined with the warm-start technique used for solving many combinatorial optimization problems, which require the solutions of a series of semidefinite programming problems. Secondly, the search direction of IPRSDP is symmetric in itself, and hence the symmetrization procedure is not required any more. Thirdly, with the introduction of the smoothing barrier augmented Lagrangian function, IPRSDP can provide the explicit form of the Schur complement matrix. This enables the complexity of forming this matrix in IPRSDP to be comparable to or lower than that of many existing search directions. The global convergence of IPRSDP is established under suitable assumptions. Numerical experiments are made on the SDPLIB set, which demonstrate the efficiency of IPRSDP.</p>","PeriodicalId":55227,"journal":{"name":"Computational Optimization and Applications","volume":"3 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Optimization and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10589-024-00558-8","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
We propose an efficient primal-dual interior-point relaxation algorithm based on a smoothing barrier augmented Lagrangian, called IPRSDP, for solving semidefinite programming problems in this paper. The IPRSDP algorithm has three advantages over classical interior-point methods. Firstly, IPRSDP does not require the iterative points to be positive definite. Consequently, it can easily be combined with the warm-start technique used for solving many combinatorial optimization problems, which require the solutions of a series of semidefinite programming problems. Secondly, the search direction of IPRSDP is symmetric in itself, and hence the symmetrization procedure is not required any more. Thirdly, with the introduction of the smoothing barrier augmented Lagrangian function, IPRSDP can provide the explicit form of the Schur complement matrix. This enables the complexity of forming this matrix in IPRSDP to be comparable to or lower than that of many existing search directions. The global convergence of IPRSDP is established under suitable assumptions. Numerical experiments are made on the SDPLIB set, which demonstrate the efficiency of IPRSDP.
期刊介绍:
Computational Optimization and Applications is a peer reviewed journal that is committed to timely publication of research and tutorial papers on the analysis and development of computational algorithms and modeling technology for optimization. Algorithms either for general classes of optimization problems or for more specific applied problems are of interest. Stochastic algorithms as well as deterministic algorithms will be considered. Papers that can provide both theoretical analysis, along with carefully designed computational experiments, are particularly welcome.
Topics of interest include, but are not limited to the following:
Large Scale Optimization,
Unconstrained Optimization,
Linear Programming,
Quadratic Programming Complementarity Problems, and Variational Inequalities,
Constrained Optimization,
Nondifferentiable Optimization,
Integer Programming,
Combinatorial Optimization,
Stochastic Optimization,
Multiobjective Optimization,
Network Optimization,
Complexity Theory,
Approximations and Error Analysis,
Parametric Programming and Sensitivity Analysis,
Parallel Computing, Distributed Computing, and Vector Processing,
Software, Benchmarks, Numerical Experimentation and Comparisons,
Modelling Languages and Systems for Optimization,
Automatic Differentiation,
Applications in Engineering, Finance, Optimal Control, Optimal Design, Operations Research,
Transportation, Economics, Communications, Manufacturing, and Management Science.