An inexact regularized proximal Newton method for nonconvex and nonsmooth optimization

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-02-20 DOI:10.1007/s10589-024-00560-0
Ruyu Liu, Shaohua Pan, Yuqia Wu, Xiaoqi Yang
{"title":"An inexact regularized proximal Newton method for nonconvex and nonsmooth optimization","authors":"Ruyu Liu, Shaohua Pan, Yuqia Wu, Xiaoqi Yang","doi":"10.1007/s10589-024-00560-0","DOIUrl":null,"url":null,"abstract":"<p>This paper focuses on the minimization of a sum of a twice continuously differentiable function <i>f</i> and a nonsmooth convex function. An inexact regularized proximal Newton method is proposed by an approximation to the Hessian of <i>f</i> involving the <span>\\(\\varrho \\)</span>th power of the KKT residual. For <span>\\(\\varrho =0\\)</span>, we justify the global convergence of the iterate sequence for the KL objective function and its R-linear convergence rate for the KL objective function of exponent 1/2. For <span>\\(\\varrho \\in (0,1)\\)</span>, by assuming that cluster points satisfy a locally Hölderian error bound of order <i>q</i> on a second-order stationary point set and a local error bound of order <span>\\(q&gt;1\\!+\\!\\varrho \\)</span> on the common stationary point set, respectively, we establish the global convergence of the iterate sequence and its superlinear convergence rate with order depending on <i>q</i> and <span>\\(\\varrho \\)</span>. A dual semismooth Newton augmented Lagrangian method is also developed for seeking an inexact minimizer of subproblems. Numerical comparisons with two state-of-the-art methods on <span>\\(\\ell _1\\)</span>-regularized Student’s <i>t</i>-regressions, group penalized Student’s <i>t</i>-regressions, and nonconvex image restoration confirm the efficiency of the proposed method.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10589-024-00560-0","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper focuses on the minimization of a sum of a twice continuously differentiable function f and a nonsmooth convex function. An inexact regularized proximal Newton method is proposed by an approximation to the Hessian of f involving the \(\varrho \)th power of the KKT residual. For \(\varrho =0\), we justify the global convergence of the iterate sequence for the KL objective function and its R-linear convergence rate for the KL objective function of exponent 1/2. For \(\varrho \in (0,1)\), by assuming that cluster points satisfy a locally Hölderian error bound of order q on a second-order stationary point set and a local error bound of order \(q>1\!+\!\varrho \) on the common stationary point set, respectively, we establish the global convergence of the iterate sequence and its superlinear convergence rate with order depending on q and \(\varrho \). A dual semismooth Newton augmented Lagrangian method is also developed for seeking an inexact minimizer of subproblems. Numerical comparisons with two state-of-the-art methods on \(\ell _1\)-regularized Student’s t-regressions, group penalized Student’s t-regressions, and nonconvex image restoration confirm the efficiency of the proposed method.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于非凸和非光滑优化的非精确正则化近端牛顿法
本文主要研究两次连续可微分函数 f 与非光滑凸函数之和的最小化问题。通过对涉及 KKT 残差的(\(\varrho \)th 次幂的 f 的 Hessian 的近似,提出了一种非精确正则化的近似牛顿方法。对于(\varrho =0\),我们证明了KL目标函数的迭代序列的全局收敛性以及指数为1/2的KL目标函数的R线性收敛率。对于(0,1)中的(\varrho),通过假设簇点在二阶静止点集合上满足阶数为q的局部霍尔德误差约束,以及在公共静止点集合上满足阶数为\(q>1\!+\!\varrho)的局部误差约束,我们分别建立了迭代序列的全局收敛性及其阶数取决于q和(\varrho)的超线性收敛率。此外,我们还开发了一种对偶半滑牛顿增强拉格朗日方法,用于寻求子问题的非精确最小值。在 \(\ell _1\)-regularized Student's t-regressions, group penalized Student's t-regressions 和非凸图像复原方面,与两种最先进的方法进行了数值比较,证实了所提方法的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1