{"title":"Relationship between plasma zinc, angiotensin-converting enzyme, alkaline phosphatase and onset of symptoms of zinc deficiency in the rat.","authors":"C L White","doi":"10.1071/bi9880343","DOIUrl":null,"url":null,"abstract":"<p><p>Recent evidence suggests that changes in plasma zinc concentration may play a central role in the development of early lesions of zinc deficiency. The aim of the following work was to better understand events occurring in plasma during the onset of zinc deficiency, and to investigate biochemical mechanisms by which plasma zinc may exert its effects. Fifty male weanling rats of 90 g weight were allocated to five treatment groups of ten rats each. Treatments were: 1, zinc deficient, mixed diet (1-2 mg Zn per kg): 2, zinc deficient, self-select diet; 3, zinc repleted; 4, control, pair fed; 5, control, ad libitum fed. With the exception of treatment 1, which consisted of a 25% casein diet, all rats were offered protein as a separate component of the diet. Control rats received zinc in the drinking water (100 mg l-1). The sequence of events following initiation of zinc deficiency were: reduced plasma zinc concentration (2 days), reduced plasma angiotensin-converting enzyme and alkaline phosphatase activities (3-4 days), reduced feed intake and growth (5-6 days) and reduced percentage protein intake (12 days). Plasma zinc concentration in the deficient rats was inversely correlated with the growth rate of the rat over the previous 24 h. Zinc repletion resulted in marked overshoot in plasma zinc concentration (300%) and converting-enzyme activity (150%) within 24 h, but a return to normal within 72 h. Alkaline phosphatase activity responded likewise, albeit more slowly. Protein self selection had no effect on the manifestations of zinc deficiency, although reduced protein intake was associated with lower plasma zinc concentration. The results provide evidence of a role for plasma zinc in the development of early clinical signs of zinc deficiency, possibly acting biochemically through reduced activity of zinc-dependent peptidases such as angiotensin-converting enzyme.</p>","PeriodicalId":8573,"journal":{"name":"Australian journal of biological sciences","volume":"41 3","pages":"343-56"},"PeriodicalIF":0.0000,"publicationDate":"1988-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1071/bi9880343","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australian journal of biological sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1071/bi9880343","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Recent evidence suggests that changes in plasma zinc concentration may play a central role in the development of early lesions of zinc deficiency. The aim of the following work was to better understand events occurring in plasma during the onset of zinc deficiency, and to investigate biochemical mechanisms by which plasma zinc may exert its effects. Fifty male weanling rats of 90 g weight were allocated to five treatment groups of ten rats each. Treatments were: 1, zinc deficient, mixed diet (1-2 mg Zn per kg): 2, zinc deficient, self-select diet; 3, zinc repleted; 4, control, pair fed; 5, control, ad libitum fed. With the exception of treatment 1, which consisted of a 25% casein diet, all rats were offered protein as a separate component of the diet. Control rats received zinc in the drinking water (100 mg l-1). The sequence of events following initiation of zinc deficiency were: reduced plasma zinc concentration (2 days), reduced plasma angiotensin-converting enzyme and alkaline phosphatase activities (3-4 days), reduced feed intake and growth (5-6 days) and reduced percentage protein intake (12 days). Plasma zinc concentration in the deficient rats was inversely correlated with the growth rate of the rat over the previous 24 h. Zinc repletion resulted in marked overshoot in plasma zinc concentration (300%) and converting-enzyme activity (150%) within 24 h, but a return to normal within 72 h. Alkaline phosphatase activity responded likewise, albeit more slowly. Protein self selection had no effect on the manifestations of zinc deficiency, although reduced protein intake was associated with lower plasma zinc concentration. The results provide evidence of a role for plasma zinc in the development of early clinical signs of zinc deficiency, possibly acting biochemically through reduced activity of zinc-dependent peptidases such as angiotensin-converting enzyme.