{"title":"The discovery of a novel IκB kinase β inhibitor based on pharmacophore modeling, virtual screening and biological evaluation.","authors":"Luyao Li, Shouping Gong","doi":"10.4155/fmc-2023-0261","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background:</b> IκB kinase β (IKKβ) plays a pivotal role in the NF-κB signaling pathway and is considered a promising therapeutic target for various diseases. <b>Materials & methods:</b> The authors developed and validated a 3D pharmacophore model of IKKβ inhibitors via the HypoGen algorithm in Discovery Studio 2019, then performed virtual screening, molecular docking and kinase assays to identify hit compounds from the ChemDiv database. The compound with the highest inhibitory activity was further evaluated in adjuvant-induced arthritis rat models. <b>Results:</b> Among the four hit compounds, Hit 4 had the highest IKKβ inhibitory activity (IC<sub>50</sub> = 30.4 ± 3.8), and it could significantly ameliorate joint inflammation and damage <i>in vivo</i>. <b>Conclusion:</b> The identified compound, Hit 4, can be optimized as a therapeutic agent for inflammatory diseases.</p>","PeriodicalId":12475,"journal":{"name":"Future medicinal chemistry","volume":" ","pages":"531-544"},"PeriodicalIF":3.2000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4155/fmc-2023-0261","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/22 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background: IκB kinase β (IKKβ) plays a pivotal role in the NF-κB signaling pathway and is considered a promising therapeutic target for various diseases. Materials & methods: The authors developed and validated a 3D pharmacophore model of IKKβ inhibitors via the HypoGen algorithm in Discovery Studio 2019, then performed virtual screening, molecular docking and kinase assays to identify hit compounds from the ChemDiv database. The compound with the highest inhibitory activity was further evaluated in adjuvant-induced arthritis rat models. Results: Among the four hit compounds, Hit 4 had the highest IKKβ inhibitory activity (IC50 = 30.4 ± 3.8), and it could significantly ameliorate joint inflammation and damage in vivo. Conclusion: The identified compound, Hit 4, can be optimized as a therapeutic agent for inflammatory diseases.
期刊介绍:
Future Medicinal Chemistry offers a forum for the rapid publication of original research and critical reviews of the latest milestones in the field. Strong emphasis is placed on ensuring that the journal stimulates awareness of issues that are anticipated to play an increasingly central role in influencing the future direction of pharmaceutical chemistry. Where relevant, contributions are also actively encouraged on areas as diverse as biotechnology, enzymology, green chemistry, genomics, immunology, materials science, neglected diseases and orphan drugs, pharmacogenomics, proteomics and toxicology.