Sujuan Li, Sen Wang, Anping Zhang, Lixia Luo, Jie Song, Guoli Wei, Zhijun Fang
{"title":"Cucurbitacin IIa promotes the immunogenic cell death‑inducing effect of doxorubicin and modulates immune microenvironment in liver cancer.","authors":"Sujuan Li, Sen Wang, Anping Zhang, Lixia Luo, Jie Song, Guoli Wei, Zhijun Fang","doi":"10.3892/ijo.2024.5625","DOIUrl":null,"url":null,"abstract":"<p><p>The immunogenic cell death (ICD) has aroused great interest in cancer immunotherapy. Doxorubicin (DOX), which can induce ICD, is a widely used chemotherapeutic drug in liver cancer. However, DOX‑induced ICD is not potent enough to initiate a satisfactory immune response. Cucurbitacin IIa (CUIIa), a tetracyclic triterpene, is a biologically active compound present in the <i>Cucurbitaceae</i> family. The present study assessed the effects of the combination of DOX and CUIIa on the viability, colony formation, apoptosis and cell cycle of HepG2 cells. <i>In vivo</i> anticancer effect was performed in mice bearing H22 tumor xenografts. The hallmark expression of ICD was tested using immunofluorescence and an ATP assay kit. The immune microenvironment was analyzed using flow cytometry. The combination of CUIIa and DOX displayed potent apoptosis inducing, cell cycle arresting and <i>in vivo</i> anticancer effects, along with attenuated cardiotoxicity in H22 mice. The combination of DOX and CUIIa also facilitated ICD as manifested by elevated high‑mobility group box 1, calreticulin and ATP secretion. This combination provoked a stronger immune response in H22 mice, including dendritic cell activation, increment of cytotoxic T cells and T helper 1 cells. Moreover, the proportion of immunosuppressive cells including myeloid‑derived suppressor cells, T regulatory cells and M2‑polarized macrophages, decreased. These data suggested that CUIIa is a promising combination partner with DOX for liver cancer treatment, probably via triggering ICD and remolding the immune microenvironment.</p>","PeriodicalId":14175,"journal":{"name":"International journal of oncology","volume":"64 4","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10901535/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3892/ijo.2024.5625","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/23 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The immunogenic cell death (ICD) has aroused great interest in cancer immunotherapy. Doxorubicin (DOX), which can induce ICD, is a widely used chemotherapeutic drug in liver cancer. However, DOX‑induced ICD is not potent enough to initiate a satisfactory immune response. Cucurbitacin IIa (CUIIa), a tetracyclic triterpene, is a biologically active compound present in the Cucurbitaceae family. The present study assessed the effects of the combination of DOX and CUIIa on the viability, colony formation, apoptosis and cell cycle of HepG2 cells. In vivo anticancer effect was performed in mice bearing H22 tumor xenografts. The hallmark expression of ICD was tested using immunofluorescence and an ATP assay kit. The immune microenvironment was analyzed using flow cytometry. The combination of CUIIa and DOX displayed potent apoptosis inducing, cell cycle arresting and in vivo anticancer effects, along with attenuated cardiotoxicity in H22 mice. The combination of DOX and CUIIa also facilitated ICD as manifested by elevated high‑mobility group box 1, calreticulin and ATP secretion. This combination provoked a stronger immune response in H22 mice, including dendritic cell activation, increment of cytotoxic T cells and T helper 1 cells. Moreover, the proportion of immunosuppressive cells including myeloid‑derived suppressor cells, T regulatory cells and M2‑polarized macrophages, decreased. These data suggested that CUIIa is a promising combination partner with DOX for liver cancer treatment, probably via triggering ICD and remolding the immune microenvironment.
期刊介绍:
The main aim of Spandidos Publications is to facilitate scientific communication in a clear, concise and objective manner, while striving to provide prompt publication of original works of high quality.
The journals largely concentrate on molecular and experimental medicine, oncology, clinical and experimental cancer treatment and biomedical research.
All journals published by Spandidos Publications Ltd. maintain the highest standards of quality, and the members of their Editorial Boards are world-renowned scientists.