Lina AlTamimi, Zainab Z Zakaraya, Mohammad Hailat, Mousa N Ahmad, Nidal A Qinna, Mohammed F Hamad, Wael Abu Dayyih
{"title":"Test of insulin resistance in nondiabetic and streptozotocin-induced diabetic rats using glycosylated hemoglobin test and other interventions.","authors":"Lina AlTamimi, Zainab Z Zakaraya, Mohammad Hailat, Mousa N Ahmad, Nidal A Qinna, Mohammed F Hamad, Wael Abu Dayyih","doi":"10.4103/JAPTR.JAPTR_343_23","DOIUrl":null,"url":null,"abstract":"<p><p>Type 2 diabetes is common globally. Pioglitazone (PGZ) is an oral TZD antidiabetic, whereas chromium-picolinate (Cr-PL) and Cr-glucose tolerance factor (Cr-GTF) are useful type 2 diabetes mellitus (T2DM) supplements. Cr-PL/GTF antioxidants cure T2DM. They may fail in diabetes with or without insulin-sensitizing medications. It examined how Cr-PL, Cr-GTF, PGZ, and their combination affected glucose, glycosylated hemoglobin, insulin, and HOMA-IR. Sixty-three adult Sprague-Dawley rats (220-300 g) were selected, and nine rats were randomly assigned to a normal nondiabetic group. In contrast, 54 rats were randomly split into 9 rats per each of the 6 major groups and injected intraperitoneally with 40 mg/kg STZ to induce T2DM. Rats were administered PGZ = 0.65 mg/kg (rat weight)/day, Cr-PL = 1 mg/kg, Cr-GTF = 1 mg/kg, and their combinations (PGZ + Cr-PL and Cr-GTF) daily for 6 weeks per intervention. The PGZ + Cr-PL and PGZ + Cr-GTF groups had substantially lower insulin levels than the PGZ group (13.38 ± 0.06, 12.98 ± 0.19 vs. 14.11 ± 0.02, respectively), with the PGZ + Cr-GTF group having the lowest insulin levels (12.98 ± 0.19 vs. 14.11 ± 0.02, 13.38±0.06, respectively). Intervention substantially reduced HOMA-IR in the PZ + Cr-PL and PZ + Cr-GTF groups compared to PGZ (7.49 ± 0.04, 6.69 ± 0.11 vs. 8.37 ± 0.04, respectively). This research found that combining PGZ with Cr-GTF resulted in considerably lower HOMA-IR levels than the PGZ and Cr-PL groups (6.69 ± 0.11 vs. 8.37 ± 0.04, 7.49 ± 0.04, respectively). Both Cr-PL and Cr-GTF may control T2DM. Both Cr complexes improved T2DM biomarkers more than the control diabetic group without medication. PGZ alone and PGZ + Cr-PL had less pharmacological synergy than Cr-GTF and PGZ in altering insulin and HOMA-IR blood levels. These encouraging discoveries need more study.</p>","PeriodicalId":14877,"journal":{"name":"Journal of Advanced Pharmaceutical Technology & Research","volume":"15 1","pages":"1-7"},"PeriodicalIF":1.4000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10880917/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Pharmaceutical Technology & Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/JAPTR.JAPTR_343_23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/15 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0
Abstract
Type 2 diabetes is common globally. Pioglitazone (PGZ) is an oral TZD antidiabetic, whereas chromium-picolinate (Cr-PL) and Cr-glucose tolerance factor (Cr-GTF) are useful type 2 diabetes mellitus (T2DM) supplements. Cr-PL/GTF antioxidants cure T2DM. They may fail in diabetes with or without insulin-sensitizing medications. It examined how Cr-PL, Cr-GTF, PGZ, and their combination affected glucose, glycosylated hemoglobin, insulin, and HOMA-IR. Sixty-three adult Sprague-Dawley rats (220-300 g) were selected, and nine rats were randomly assigned to a normal nondiabetic group. In contrast, 54 rats were randomly split into 9 rats per each of the 6 major groups and injected intraperitoneally with 40 mg/kg STZ to induce T2DM. Rats were administered PGZ = 0.65 mg/kg (rat weight)/day, Cr-PL = 1 mg/kg, Cr-GTF = 1 mg/kg, and their combinations (PGZ + Cr-PL and Cr-GTF) daily for 6 weeks per intervention. The PGZ + Cr-PL and PGZ + Cr-GTF groups had substantially lower insulin levels than the PGZ group (13.38 ± 0.06, 12.98 ± 0.19 vs. 14.11 ± 0.02, respectively), with the PGZ + Cr-GTF group having the lowest insulin levels (12.98 ± 0.19 vs. 14.11 ± 0.02, 13.38±0.06, respectively). Intervention substantially reduced HOMA-IR in the PZ + Cr-PL and PZ + Cr-GTF groups compared to PGZ (7.49 ± 0.04, 6.69 ± 0.11 vs. 8.37 ± 0.04, respectively). This research found that combining PGZ with Cr-GTF resulted in considerably lower HOMA-IR levels than the PGZ and Cr-PL groups (6.69 ± 0.11 vs. 8.37 ± 0.04, 7.49 ± 0.04, respectively). Both Cr-PL and Cr-GTF may control T2DM. Both Cr complexes improved T2DM biomarkers more than the control diabetic group without medication. PGZ alone and PGZ + Cr-PL had less pharmacological synergy than Cr-GTF and PGZ in altering insulin and HOMA-IR blood levels. These encouraging discoveries need more study.
期刊介绍:
Journal of Advanced Pharmaceutical Technology & Research (JAPTR) is an Official Publication of Society of Pharmaceutical Education & Research™. It is an international journal published Quarterly. Journal of Advanced Pharmaceutical Technology & Research (JAPTR) is available in online and print version. It is a peer reviewed journal aiming to communicate high quality original research work, reviews, short communications, case report, Ethics Forum, Education Forum and Letter to editor that contribute significantly to further the scientific knowledge related to the field of Pharmacy i.e. Pharmaceutics, Pharmacology, Pharmacognosy, Pharmaceutical Chemistry. Articles with timely interest and newer research concepts will be given more preference.