Mini-review: Nanoparticles for enhanced biogas upgrading.

IF 3.7 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL Waste Management & Research Pub Date : 2025-01-01 Epub Date: 2024-02-23 DOI:10.1177/0734242X241231397
Elena Passalacqua, Elena Collina, Andres Fullana, Valeria Mezzanotte
{"title":"Mini-review: Nanoparticles for enhanced biogas upgrading.","authors":"Elena Passalacqua, Elena Collina, Andres Fullana, Valeria Mezzanotte","doi":"10.1177/0734242X241231397","DOIUrl":null,"url":null,"abstract":"<p><p>This mini-review is intended to explore the innovative applications of nanoparticles (NPs) in biogas upgrading, emphasizing their capacity to enhance biogas quality. Numerous studies underscore how NPs, when applied during anaerobic digestion, can boost not only the quantity but also the quality of the produced biogas, leading to reduce significantly the concentration of hydrogen sulphide or even to remove it completely. Moreover, NPs are proving to be excellent alternatives as adsorbent materials, achieving up to 400 mg<sub>H2S</sub> g<sup>-1</sup> NPs. In addition, new studies are exploring the application of NPs to increase the efficiency of biological treatments thanks to their unique features. This review also emphasizes the potential benefits and addresses the challenges that need to be overcome for these technologies to reach their full potential, ultimately contributing to the development of a sustainable and environmentally friendly energy landscape.</p>","PeriodicalId":23671,"journal":{"name":"Waste Management & Research","volume":" ","pages":"16-25"},"PeriodicalIF":3.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Waste Management & Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1177/0734242X241231397","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/23 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

This mini-review is intended to explore the innovative applications of nanoparticles (NPs) in biogas upgrading, emphasizing their capacity to enhance biogas quality. Numerous studies underscore how NPs, when applied during anaerobic digestion, can boost not only the quantity but also the quality of the produced biogas, leading to reduce significantly the concentration of hydrogen sulphide or even to remove it completely. Moreover, NPs are proving to be excellent alternatives as adsorbent materials, achieving up to 400 mgH2S g-1 NPs. In addition, new studies are exploring the application of NPs to increase the efficiency of biological treatments thanks to their unique features. This review also emphasizes the potential benefits and addresses the challenges that need to be overcome for these technologies to reach their full potential, ultimately contributing to the development of a sustainable and environmentally friendly energy landscape.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
微型综述:增强沼气升级的纳米颗粒。
这篇小型综述旨在探讨纳米粒子(NPs)在沼气提质中的创新应用,强调其提高沼气质量的能力。大量研究强调,在厌氧消化过程中应用纳米粒子不仅能提高沼气产量,还能提高沼气质量,从而显著降低硫化氢浓度,甚至完全去除硫化氢。此外,NPs 被证明是吸附材料的绝佳替代品,其吸附量可达 400 mgH2S g-1 NPs。此外,新的研究正在探索如何应用氮氧化物来提高生物处理的效率。本综述还强调了这些技术的潜在益处,并探讨了要充分发挥这些技术的潜力所需要克服的挑战,最终促进可持续和环境友好型能源环境的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Waste Management & Research
Waste Management & Research 环境科学-工程:环境
CiteScore
8.50
自引率
7.70%
发文量
232
审稿时长
4.1 months
期刊介绍: Waste Management & Research (WM&R) publishes peer-reviewed articles relating to both the theory and practice of waste management and research. Published on behalf of the International Solid Waste Association (ISWA) topics include: wastes (focus on solids), processes and technologies, management systems and tools, and policy and regulatory frameworks, sustainable waste management designs, operations, policies or practices.
期刊最新文献
Smart waste management and air pollution forecasting: Harnessing Internet of things and fully Elman neural network. A comparison of bulk inorganic constituents and trace pollutant concentration in leachates by landfill type. Food waste minimisation and energy efficiency for carbon emission reduction. A comprehensive review on applications of multi-criteria decision-making methods in healthcare waste management. Classification of e-waste using machine learning-assisted laser-induced breakdown spectroscopy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1