{"title":"Astragalus root increases Treg and Th17 involvement in embryo implantation and pregnancy maintenance by decreasing CTLA-4<sup>+</sup> Tregs.","authors":"Kyoko Kobayashi, Kenroh Sasaki","doi":"10.5582/ddt.2023.01100","DOIUrl":null,"url":null,"abstract":"<p><p>Maintenance of pregnancy is highly dependent on the maternal immune system. High levels of regulatory T cells (Tregs) accumulate in the maternal placenta to suppress immunoreactivity against fetal antigens. We assessed whether Astragalus root (AsR) and AsR-containing Kampo medicines modulate immunoreactivity and thereby increase mouse litter size. AsR-exposed murine splenocytes exhibited significantly increased IL-2 secretion. In AsR-exposed mice, total Tregs were significantly increased, whereas cytotoxic T lymphocyte antigen 4 (CTLA-4)-positive Tregs were decreased in AsR-exposed mice. Tregs express IL-2 receptor subunit alpha and are activated by IL-2. CTLA-4 interacts with B7 expressed in antigen-presenting cells (APCs) with high affinity, and CTLA-4/B7 signaling plays a critical role in inhibiting APC activity, thereby suppressing CD4<sup>+</sup> T cell proliferation and activation. The decrease in CTLA-4<sup>+</sup> Tregs in AsR-exposed mice is thought to induce an increase in CD4<sup>+</sup> T cells, leading to increased IL-2 secretion from CD4<sup>+</sup> T cells followed by Treg activation. Th17 cells prevent trophoblast apoptosis, resulting in trophoblast invasion into the decidua. AsR increases Th17 cells, thereby inducing dose-dependent increases in litter size. Although Keishikaogito (KO)- and Ogikenchuto (OK)-exposed mice exhibited increased IL-2 secretion and splenic Tregs, KO also increased CTLA-4<sup>+</sup> Tregs. Therefore, KO promoted immunosuppression by increasing CTLA-4<sup>+</sup> Tregs, which induced a decrease in Th17 and exerted little effect on litter size. Therefore, an increase in both Tregs and Th17 cells can be considered necessary for embryo implantation and pregnancy maintenance.</p>","PeriodicalId":47494,"journal":{"name":"Drug Discoveries and Therapeutics","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Discoveries and Therapeutics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5582/ddt.2023.01100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/21 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Maintenance of pregnancy is highly dependent on the maternal immune system. High levels of regulatory T cells (Tregs) accumulate in the maternal placenta to suppress immunoreactivity against fetal antigens. We assessed whether Astragalus root (AsR) and AsR-containing Kampo medicines modulate immunoreactivity and thereby increase mouse litter size. AsR-exposed murine splenocytes exhibited significantly increased IL-2 secretion. In AsR-exposed mice, total Tregs were significantly increased, whereas cytotoxic T lymphocyte antigen 4 (CTLA-4)-positive Tregs were decreased in AsR-exposed mice. Tregs express IL-2 receptor subunit alpha and are activated by IL-2. CTLA-4 interacts with B7 expressed in antigen-presenting cells (APCs) with high affinity, and CTLA-4/B7 signaling plays a critical role in inhibiting APC activity, thereby suppressing CD4+ T cell proliferation and activation. The decrease in CTLA-4+ Tregs in AsR-exposed mice is thought to induce an increase in CD4+ T cells, leading to increased IL-2 secretion from CD4+ T cells followed by Treg activation. Th17 cells prevent trophoblast apoptosis, resulting in trophoblast invasion into the decidua. AsR increases Th17 cells, thereby inducing dose-dependent increases in litter size. Although Keishikaogito (KO)- and Ogikenchuto (OK)-exposed mice exhibited increased IL-2 secretion and splenic Tregs, KO also increased CTLA-4+ Tregs. Therefore, KO promoted immunosuppression by increasing CTLA-4+ Tregs, which induced a decrease in Th17 and exerted little effect on litter size. Therefore, an increase in both Tregs and Th17 cells can be considered necessary for embryo implantation and pregnancy maintenance.